
Preliminaries Problem representation Search systems Searching game trees

Artifical Intelligence

Lorant Csige PhD.

April 29, 2014



Preliminaries Problem representation Search systems Searching game trees

Acknowledgements

This work was supported by the European Union and the State of
Hungary, co-financed by the European Social Fund in the
framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ’National
Excellence Program’.



Preliminaries Problem representation Search systems Searching game trees

Contents
1 Preliminaries
2 Problem representation

State space representation
The state-space graph

3 Search systems
An introduction
Irrevocable searching
Searching with backtracking
Searching with tree
Breadth-first and depth-first searches
Optimal searching
Best-first algorithm
Algorithm A

4 Searching game trees
State space representation
The minimax algorithm



Preliminaries Problem representation Search systems Searching game trees

Sets

We begin with a brief survay of the symbolic notations employed in
the course.
Definition
A set is a collection of distinct objects, without repetition, and
without ordering. The elements of a set are referred to as its
members. We sometimes write a ∈ A to indicate that the element
a is a member of the set A, and a 6∈ A for a is not a member of A.
Two sets are equal when they have the same members. An empty
set, denoted ∅ or {}, is a set with no members.
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Sets II.

A method defining particular sets is
by an enumeration of the elements of the set; or
by a description of some attribute or characteristic of the
elements of the set; in this case, the set is said to be implicitly
specified.

Examples
1 Set of marks in our university: M 
 {1, 2, 3, 4, 5}.
2 Set of positive integers less or equal than 5:

S 
 {x |x is an integer and 0 < x and x ≤ 5}

Set A is said to be contained in the set B if every member of A is
a member of B. We also say that A is a subset of B, denoted
A ⊆ B. If A ⊆ B and there is a member of B that is not in A then
A ⊂ B (A is a proper subset of B).
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Sets III.

Definition
The set of all subsets of a set A is called the power set of A,
denoted P(A);

P(A) 
 {X |X ⊆ A}.

Note that if A has n members, P(A) has 2n members.

Examples
If A = {a, b, c},

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
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Sets IV.

Definition
Let A,B be nonempty sets, and let A× B (read A cross B) be
defined as

A× B 
 {(a, b)|a ∈ A and b ∈ B};

that is, A× B, the Cartesian product of A and B, is the set of all
ordered pairs (a, b) such that the first element of the ordered pair,
a, is from A and the second element of the pair, b, is from B.

Examples:

{1, 2} × {a, b, c} = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

The product of more factors is defined similarly:

A1 × A2 × · · · × An 
 {(a1, a2, . . . , an)|a1 ∈ A1 and . . . an ∈ An}
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Relations

Now a two-argument (or binary) relation, R, with domain A and
range B, is any subset of A× B. If (a, b) ∈ R, we often write aRb.
Examples Let the domain and the range {1, 2, 3}.
R(<) 
 {(1, 2), (1, 3), (2, 3)} and R(=) 
 {(1, 1), (2, 2), (3, 3)}
Let R be a relation where the domain and the range are identical.

R ⊆ A× A is reflexive if every element is related to itself.
R ⊆ A× A is symmetric if, whenever (a1, a2) is in R, (a2, a1)
is also in R.
R ⊆ A× A is transitive if, whenever (a1, a2) is in R and
(a2, a3) is also in R, (a1, a3) is in R also.

Examples {(a, d), (d , a), (a, a), (d , d)} is a symmetric and
transitive (but not reflexive) relation over {a, b, c, d}.
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Relations II.

”is greater than”, ”is equal to”, or e.g. ”divides” in arithmetic
”is congruent to” in geometry
”is adjacent to” in graph theory
”is orthogonal to” in linear algebra

A binary relation is the special case n = 2 of an n-ary relation
R ⊆ A1 × . . .× An, that is, a set of n-tuples where the jth
component of each n-tuple is taken from the jth domain Aj of the
relation.
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Graphs

Definition
A directed graph is described as a pair (N,E ) where N is a
nonempty set of nodes and E ⊆ N × N is a set of edges. If
(n,m) ∈ E , there is a directed edge from n to m.

Examples: ({a, b, c, d}, {(a, b), (b, c), (b, d), (c, a), (c, d)}) is a
directed graph.

Figure : Visualization of a directed graph
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Graphs II.

Definition
A finite directed path with origin n and endpoint m (path from n
to m) is any finite sequence of edges (n1,m1), (n2,m2), . . . , (nl ,ml)
such that n1 = n, nl = m and for all edges the endpoint of an edge
is just the startpoint of the next one.

The length of a path is the number of its edges.
A cycle in a directed graph is a path (of length greater then
1) from a node to itself.
A loop in a directed graph is some different paths from the
same origin to the same endpoint.

Examples (a, b), (b, c), (c, d) is a directed path of the previous
graph. The length of the path is 3. (a, b), (b, d) is an other path
with the length 2. They form a loop. (a, b), (b, c), (c, a) is a cycle.
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First-order logic

Much of everyday and mathematical language can be symbolized
by the first-order logic. In general, we use the following four types
of symbols to construct an atom:

variables: x , y , z , . . .
constants: These are names of objects such as John, Mary,
and 3.
function symbols: These are names of operations such as
father and plus.
predicate symbols: These are names of relations such as
Greater and Likes.

Any function or predicate symbols takes a specified number of
arguments. If a function symbol f (or a predicate symbol P) takes
n arguments, f (or P) is called an n-place function (predicate)
symbol.
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First-order logic

Terms are defined recursively as follows:
1 A constant is a term.
2 A variable is a term.
3 If f is an n-place function symbol, and t1, . . . , tn are terms,

then f (t1, . . . , tn) is a term.
4 All terms are generated by applying the above rules.

Examples
plus(x , 3), father(John), father(father(John)) are terms.

If P is an n-place predicate symbol, and t1, . . . , tn are terms, then
P(t1, . . . , tn) is an atom.

Examples Greater(x , 3),Greater(plus(x , 3), 3), Likes(John,Mary)
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First-order logic

Formulas are defined recursively as follows:
1 An atom is a formula.
2 If A and B formulas, then ¬A, (A ∧ B), (A ∨ B), (A ⊃ B) are

formulas.
3 If A is formula, and x is a variable, then ∀xA,∃xA are

formulas.
4 Formulas are generated by applying the above rules.
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First-order logic

Examples
1 Every rational number is a real numbers.
2 There exists a number that is a prime.
3 For every number x , there exists a number y such that x < y .

Denote ”x is a prime number” by P(x), ”x is a rational number”
by Q(x), ”x is a real number” by R(x), and ”x is less than y” by
Less(x , y).

1 ∀x(Q(x) ⊃ R(x))
2 ∃xP(x)
3 ∀x∃yLess(x , y)
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State space representation

Aim of AI

Many human mental activities such as writing programs, doing
mathematics, engaging in commonsense reasoning, understanding
language and even driving a car are said to demand intelligence.
Recently, several computer systems have been built that can
perform tasks such as these. We might say, that such systems
possess some degree of artificial intelligence.
This lecture is about some of the most important, core AI ideas:
problem-representations and search strategies.
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State space representation

State space representation

Let p be a problem and n be the number of relevant properties
(flavours) connection with p. (e.g. object, position, size,
temperature, colour, etc.) We found m properties.
A set of values belongs to each property of p. We denote
these sets by H1,H2, . . . ,Hm, where H1 contains the possible
values of the first property, and so on. (e.g. colour:
black/white; temperature: [−20◦, 40◦], etc.)

If the properties have the values h1, . . . , hm we say, that p is in the
state (h1, . . . , hm). The state space is the set of all possible states
of problem p.
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State space representation

The state space - Cartesian product

Let Hi (i = 1, . . . ,m) be the set of possible values of the property
i . Then the states of p are elements of the set of

H1 × · · · × Hm

.
We can have conditions, called constraints, which determine the
possible states.
Therefore, the state space is a subset of the Cartesian product of
Hi(i = 1, . . . ,m) defined by the constraints.

A = { a | a ∈ H1 × · · · × Hmand constraints(a) }
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State space representation

State space representation

S is the state space, which is a nonempty subset of the set
H1 ×H2 × · · · × Hm. We use so called constraints to
determine the states from the set H1 ×H2 × · · · × Hm.
S = {(h1, . . . , hm)|(h1, . . . , hm) ∈ H1 × · · · × Hn,
consraint(h1, . . . , hm)}
The elements of the state space are states.
start is a state in S, called start or initial state (start ∈ S).
G is a subset of S, called set of goal states (G ⊆ S).
O is a nonempty set of unary functions (operators) over S,
where dom(o) ⊆ S and rng(o) ⊆ S for all o ∈ O. dom

(o) = {s|s ∈ S, precondition(s)}
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State space representation

State space representation

Definition
A state-space representation of the problem p can be defined as
the following tuple:

p = 〈S, start,G,O〉



Preliminaries Problem representation Search systems Searching game trees

State space representation

State space representation

Let 〈S, start,G,O〉 be a state space representation and s ∈ S,
s ′ ∈ S be states.

The state s ′ is directly accessible from s if there is an o ∈ O
where s ∈ dom(o) and o(s) = s ′. We denote direct
accessibility by s ⇒

o
s ′ or s ⇒ s ′.

The state s ′ is accessible from s if there is a list of states
s0, s1, . . . , sn and list of operators o1, . . . , on, where s0 = s,
sn = s ′ and sk−1 ⇒ok

sk for all k ∈ {1, 2, . . . , n}. We denote

accessibility by s ∗⇒
o1,...,on

s ′ or s ∗⇒ s ′.

Let p = 〈S, start,G,O〉 be a problem. p is solvable in the state
space representation if there is a state g ∈ G such that
start ∗⇒

o1,...,on
g .

The sequence of operators o1, . . . , on is called a solution of p.
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State space representation

The eight-puzzle

The eight-puzzle consists of eight numbered, movable tiles in a 3x3
frame. One cell of the frame is always empty. It is possible to
move a neighbouring numbered tile into the empty cell (we could
say to move the empty cell). Two configurations of tiles are given.
Consider the problem of changing the initial configuration into the
goal configuration. A solution to the problem is a sequence of
moves.
The relevant properties in this word: the numbered tiles of the
frame. We have nine cells of the frame, referred them by their row
and column.

cell (1, 1) (1, 2) . . . (3, 3)
tile h1,1 h1,2 . . . h3,3

where 0 ≤ lk,l ≤ 8 for all 1 ≤ k, l ≤ 3.
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State space representation

The eight-puzzle
Therefore Hk,l = H = {0, 1, . . . , 8} for all 1 ≤ k, l ≤ 3. A state is
a 3x3 array h1,1 h1,2 h1,3

h2,1 h2,2 h2,3
h3,1 h3,2 h3,3


where the values are from H, and every value from H appear
exactly once:

∀k∀l∀s∀o(¬(k = s) ∨ ¬(l = o) ⊃ ¬(hk,l = hs,o)).

So the number of states is 9! = 362880. (This state space is small
enough.) The start state and the goal state are:

start =

1 2 0
4 6 3
7 5 8

 g =

1 2 3
4 5 6
7 8 0
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State space representation

The eight-puzzle
The 8-puzzle has the following four moves: move empty space
(blank) to the left, move blank up, move blank to the right, and
move blank down. These moves are modeled by operators that
operate on the states:

up :

h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

 7→
h′1,1 h′1,2 h′1,3
h′2,1 h′2,2 h′2,3
h′3,1 h′3,2 h′3,3


The operator up is applicable if

¬∃k∃l((hk,l = 0) ∧ (k = 1)).

The result of applying if hs,o = 0:

h′k,l 



0 if k = s − 1, l = o
hs−1,o if k = s, l = o
hk,l otherwise.
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State space representation

Eight Queens Problem

In chess, a queen can move horizontally, vertically, or diagonally. A
chess board has 8 rows and 8 columns. The Eight Queens problem
asks how to place 8 queens on a chess board so that none of them
can hit any other in one move.
(http://spaz.ca/aaron/SCS/queens/)
The relevant properties in this word: whether a cell of the chess
board contains a queen or not, and if not, whether a queen on the
board hits this cell or not. We have 8× 8 cells on the board,
referred them by their row and column.

cell (1, 1) (1, 2) . . . (8, 8)
tile h1,1 h1,2 . . . h8,8

where lk,l ∈ {queen, empty , hit} for all 1 ≤ k, l ≤ 8.
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State space representation

Eight Queens Problem

Therefore Hk,l = H = {queen, empty , hit} for all 1 ≤ k, l ≤ 8. A
state is a 8x8 array 

h1,1 h1,2 · h1,8
h2,1 h2,2 · h2,8

h8,1 h8,2 · h8,8


where the values are from H, and:

∀k∀l(hk,l = queen ⊃ ∀o((o 6= l) ⊃ (hk,o = hit))∧
∀s((s 6= k) ⊃ (hs,l = hit))∧

∀s∀o((s 6= k)∧(o 6= l)∧(|s−o| = |k−l |)∧(s+o = k+l) ⊃ (hs,o = hit)).
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State space representation

Eight Queens Problem

The start state is:

start =


empty empty . . . empty
empty empty . . . empty

empty empty . . . empty


Let be δ(queen) = 1, δ(empty) = 0, δ(hit) = 0. Then the goal
condition is g = {h|

∑
δ(hk,l) = 8}.

We can take a queen up the chess board onto the position (k, l), if
this cell is empty and after taking, on this cell a queen will be.
This queen will hits some other cells.
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State space representation

Eight Queens Problem

The move is modeled by an operator that operates on the states:

queen-up :



h1,1 h1,2 . . . h1,8
h2,1 h2,2 . . . h2,8

h8,1 h8,2 . . . h8,8

 ; (k, l)

 7→

h′1,1 h′1,2 . . . h′1,8
h′2,1 h′2,2 . . . h′2,8

h′8,1 h′8,2 . . . h′8,8
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State space representation

Eight Queens Problem

The operator queen − up is applicable if hk,l = empty . The result
of applying:

h′s,o 



queen if s = k, o = l
hit if (s + o = k + l) ∨ (|s − o| = |k − l |)
hk,l otherwise.

(There is exactly one queen in each row.)



Preliminaries Problem representation Search systems Searching game trees

The state-space graph

The state-space graph
Let p = 〈S, start,G,O〉 be a problem. This tuple determines a
directed graph. (A set + a binary relation determines a graph.)

The states of state-space S are the nodes of this graph. If
s ∈ S then ns is a node.

N = {ns | s ∈ S}.

nstart is the start node.
The nodes prepared from goal states are goal nodes:

T = {ng | g ∈ G}.

(They are also called termination nodes.)
The directed edges:

E = {(ns , ns′) | s, s ′ ∈ S and s ⇒ s ′}.
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The state-space graph

The state-space graph

The directed graph
〈N, nstart ,T ,E 〉

is the state-space graph of the problem p.
Obviously, an explicit specification of the state-space graph is
impractical for large graphs and impossible for those having an
infinite set of nodes. In the ordinary way, it is given implicitly (with
the state-space representation).

Lemma
A graph represented problem p is solvable if and only if there is a
directed path in the state-space graph from the start node into one
of the goal nodes. The directed paths of this kind are called
solutions of p.
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The state-space graph

Cost

Definition
Often it is conventient to assign costs to edges, to represent the
cost of applying the corresponding operator. We use the notation
cost(nk , nl) to denote the cost of the directed edge (nk , nl). We
assume that these costs are all greater than some arbitrarily small
positive number, δ. The cost of a directed path n1, n2, . . . , nl is

l−1∑
k=1

cost(nk , nk+1).

In some problems, we want to find that path having minimal
(optimal) cost between start node into any goal node.
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The state-space graph

The Travelling Salesman Problem

It is a well-known special problem with the following:

Let A,B,C,D be four stations, salesman should visit all the
stations once, A is the start and and the last station.
Properties: many loops, all the nodes (states) have directed
path (operator series) to a termination node (goal state)!
No circles
Representation graph has a root and meany leaves (goal
nodes)
Solutions (paths) have the same lengths (3), cost is
important. Usually our goal is to find the minimal cost path.
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The state-space graph

The 4 Queens Problem

Put 4 Queens on the 4x4 board !

States: 4x4 arrays, 1 operator
With smart representation the number of edges and states can
be reduced.
Representation graph: root, goal nodes are leaves, no loops
and circles.
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The state-space graph

Remarks

Choice of cost function: route planning (distance vs. time)
Travelling Salesman Problem: we have the same number of
operators - we need a COST
State Space Graph - State Space Representation are
„equivalent”
Complicated graphs: loops and circles (making trees), 9!
number of nodes in 8 puzzle...
Reducing the number of nodes and edges is important (e.g. 8
queens problem)
Roots and leaves (NO in 8 puzzle, YES in Travelling
Salesman)
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An introduction

Search systems in general

Search systems are programs that search solutions of problems
with using a state space representation. The solution is a path of
the state space graph. The first node of a solution is the start
state, and the last node is one of the goal states.
The state space graph is not explicitly in the working memory
(storage) of the search systems. The systems include only the
state-space reprezentation of the problem. During the search, they
build (make explicit) part of the implicitly specified state-space
graph until neither a solution is discovered or search fails.
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An introduction

Search systems in general

Search systems consist of
a database: This is a working memory containing the
state(s) (part of the graph that has been constructed during
the search) that have currently been reached, together with
some additonal information about searching.
a set of production rules: The production rules operate on
the database. Each rule has a precondition that is either
satisfied or not by the database. If the precondition is
satisfied, the rule can be applied. Application of the rule
changes the database.

production rules as operators of the state space representation
production rules as „technical operations” (moving back)

a control system: The control system chooses which
applicable rule should be applied and terminates searching
when a termination condition on the database is satisfied.
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An introduction

A typical search system

1: procedure Searching(〈S, start,G,O〉)
2: database← initialize(start)
3: while True do
4: if There-is-a-solution(database) then
5: break
6: end if
7: if Can-not-continue(database) then
8: break
9: end if

10: rule← Select(database, rules)
11: database← Apply(database, rule)
12: end while
13: if There-is-a-solution(database) then
14: Solution-output(database)
15: else
16: print „Searching without success”
17: end if
18: end procedure
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An introduction

Properties of search systems

Classification of search systems:
1 Can the system modify the effect of an applied production

rule later?
no: irrevocable control like trial and error method or
hill-climbing method;
yes: tentative control like searching with backtracking or
searching with tree.

2 Does the system use special knowledge (called heuristic
information) about a problem to help reduce search?

no: blind or noninformed or exhaustive search;
yes: informed or heuristic search. (Heuristic: an estimation...)

3 The direction of searching may be
forward: from the start state into the goal states;
backward: from a goal state into the start state;
bidirectional: from both directions simultaneously.
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An introduction

Properties of search systems

The following criteria are used to evaluate search algorithms:
Completeness: Is the algorithm guaranteed to find solution, if one

exists?
Optimality: Does it find an optimal solution, if multiple solutions

exists?
Time complexity: How much time is required to find solution?
Space complexity: How much space is required to find solution?
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Irrevocable searching

Irrevocable search

Let p = 〈S, start,G,O〉 be a state space representation of the
problem p. An irrevocable search system has

a database with only one state (node), so called actual state
(node),
production rules based on operators and
the following control:
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Irrevocable searching

Algorithm of irrevocable search

1: procedure General-procedure(〈S, start,G,O〉)
2: actual← start
3: while True do
4: if actual ∈ G then
5: break
6: end if
7: O′ ← {o | o ∈ O ∧ Precondition(actual, o)}
8: if O′ 6= ∅ then
9: operator← Select(O′)
10: actual← Applay(actual, operator)
11: else
12: break
13: end if
14: end while
15: if actual ∈ G then
16: print actual
17: else
18: print „Searching without success”
19: end if
20: end procedure
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Irrevocable searching

Algorithm of irrevocable search

In the course of searching, it may be different manner to select the
next rule (operator) from the set of applicable rules (operators).

Selecting at random: try and error method;
Selecting according with heuristic: hill-climbing method.
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Irrevocable searching

Hill Climbing

Let f : S → {0, 1, 2, . . .} be the so called heuristic function. f (s)
evaluates the lenght of path from node ns into the goal.

f (s) 

{

0, if s ∈ G
∞, if ¬∃g(g ∈ G ∧ s ∗⇒ g .).

The control strategy uses f to select a rule. It selects the
applicable rule that products a database (new actual state) having
the largest decrease in the value of f . (Among directly accessible
states, the new actual state will be nearest to a goal.) If none of
the applicable rules permits an decrease in the value of f , a rule is
selected that does not increase the value. If there are no such
rules, the process halts.
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Irrevocable searching

The algortihm of Hill Climbing method

1: procedure Hill-Climbing(〈S, start,G,O〉, f )
2: actual← start
3: while True do
4: if actual ∈ G then
5: break
6: end if
7: O′ ← {o | o ∈ O ∧

∧ Precondition(actual, o) ∧ f (Apply(actual, o)) ≤ f (actual)}
8: if O′ 6= ∅ then
9: operator← Select({o | o ∈ O′ ∧

∧ ∀o′(o′ ∈ O′ ⊃ f (Apply(actual, o)) ≤ f (Apply(actual, o′)))})
10: actual← Apply(actual, operator)
11: else
12: break
13: end if
14: end while
15: if actual ∈ G then
16: print actual
17: else
18: print „Searching without success”
19: end if
20: end procedure
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Irrevocable searching

An example

Applying hill-climbing to the eight-puzzle we might use, as a
heuristic function, the number of tiles "out of place", as compared

to the goal state.

1 2 0
4 6 3
7 5 8


4

→

1 2 3
4 6 0
7 5 8


3

→

1 2 3
4 0 6
7 5 8


2

→

1 2 3
4 5 6
7 0 8


1

→

1 2 3
4 5 6
7 8 0


0
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Irrevocable searching

Evaluating of irrecovable methods

Completeness: They are not complete methods. At the same time,
if the state space graph is finite and it does not
contains circles and there is a solution (a path) from
each states into a goal in it, then these methods
terminate by finding a goal state. We can not get
any solution, only a goal state.

Space complexity: The database is very small (only a state).
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Searching with backtracking

The basis version

Let be p = 〈S, start,G,O〉 a state-space reprezentation.
The database of a backtracking search system contains a
directed path of the state-space graph. This path is from the
start node to a node called actual node. The memory stores
the nodes and the edges of this path and some other
information about searching. The data structure is called
"search node record". Each search node contains

a state (a node of the state-space graph) s ∈ S;
a pointer to the parent search node record (the state s is the
result of applying an operator o to the state of the parent
search node);
an operator o that has produced s;
the set of operators, that have already been applied to s (or
that have not been applied to s yet).
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Searching with backtracking

The basis version

The production rules of a backtracking search system are
based on operators:
A rule based on the operator o is applicable if it has not been
applied on the state in actual search node yet. The effect of
the rule is the following. We apply the operator to the state of
actual search node. A new state comes into being. We
produce a new actual search node from the state, store the
applied operator and the pointer of the old actual search node,
finally we mark that we have not applied any operators to this
state yet. In the old search state, we have to add the operator
o to the set of already applied operators also (or we have to
delete o from the set of applicable operators).
and the so called backtracking:
The backtracking rule deletes the actual search node and its
parent will be actual again. If the database contained only one
search node, after backtracking it will be empty.

The control algorithms are the next pages.



Preliminaries Problem representation Search systems Searching game trees

Searching with backtracking

The algorithm of the basis version

1: procedure Backtrack-1(〈S, start,G,O〉)
2: State[actual-search-node]← start
3: Parent[actual-search-node]← Nil
4: Operator[actual-search-node]← ∗
5: Applied[actual-search-node]← ∅
6: while True do
7: if actual-search-node = Nil then
8: break
9: end if

10: if State[actual-search-node] ∈ G then
11: break
12: end if
13: O′ ← {o | o ∈ O ∧ Precondition(State[actual-search-node], o)∧

∧ o /∈ Applied[actual-search-node]}
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Searching with backtracking

The algorithm of the basis version

14: if O′ 6= ∅ then
15: operator← Select(O′)
16: Applied[actual-search-node]←

Applied[actual-search-node] ∪ {operator}
17: State[new]← Apply(State[actual-search-node], operator)
18: Parent[new]← actual-search-node
19: Operator[new]← operator
20: Applied[new]← ∅
21: actual-search-node← new
22: else
23: actual-search-node← Parent[actual-search-node]
24: end if
25: end while
26: if actual-search-node 6= Nil then
27: Solution-Out(actual-search-node)
28: else
29: print „There is not any solution.”
30: end if
31: end procedure
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Searching with backtracking

The algorithm of the basis version

1: procedure Backtrack-2(〈S, start,G,O〉)
2: State[actual-search-node]← start
3: Parent[actual-search-node]← Nil
4: Operator[actual-search-node]← ∗
5: Applicable[actual-search-node]←

{o | o ∈ O ∧ Precondition(State[actual-search-node], o)}
6: while True do
7: if actual-search-node = Nil then
8: break
9: end if

10: if State[actual-search-node] ∈ G then
11: break
12: end if
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Searching with backtracking

The algorithm of the basis version

13: if Applicable[actual-search-node] 6= ∅ then
14: Operator← Select(Applicable[actual-search-node])
15: Applicable[actual-search-node]←

Applicable[actual-search-node] \ {operator}
16: State[new]← Apply(State[actual-search-node], operator)
17: Parent[new]← actual-search-node
18: Operator[new]← operator
19: Applicable[new]←

{o | o ∈ O ∧ Precondition(State[new], o)}
20: actual-search-node← new
21: else
22: actual-search-node← Parent[actual-search-node]
23: end if
24: end while
25: if actual-search-node 6= Nil then
26: Solution-Out(actual-search-node)
27: else
28: print „There is not any solution.”
29: end if
30: end procedure
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Searching with backtracking

Properties of backtracking

Evaluating of the basis versions of backtacking:
Completeness: If the representation grapf is a finite graph without

circles, the backtracking algorithms are complet.
Space Complexity: The database is very small (only a path of the

state-space graph).
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Searching with backtracking

Circles

If we want to search in a graph with circles
Backtracking with circle checking:
If a state-space problem has a solution, it has a solution
without circle also. So the control selects the backtrack, when
the actual node is already on the actual path.
Backtracking with boundary:
We introduce a bound for the actual path. The control selects
the backtrack, when the length of actual path access to the
bound. During the search, the circles are circulated only
finitely times.
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Searching with backtracking

Circles
[Completeness:]

If the state-space graph is a finite graph, then the
backtracking with circle checking terminates searching after
finitelly many steps. If there are solutions, it discovers one of
them, otherwise the database will be empty. (The discovered
solution does not contains any circles.)
The backtracking with boundary terminates searching after
finitely many steps. If there are nonlonger solutions than the
bound, it discovers one of them, otherwise the database will
be empty: there may be only longer solutions in the
state-space graph than the bound.

[Time Complexity:] The backtracking with circle checking is
time-consuming (especially in the case of long circles).
[Space Complexity:] The database of backtracking with boundary
contains no more search node than the bound. The discovered
solution does not definitely circle free.
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Searching with backtracking

Algorithm with circle checking

1: procedure Backtrack-With-Circle-Checking(〈S, start,G,O〉)
2: State[actual-search-node]← start
3: Parent[actual-search-node]← Nil
4: Operator[actual-search-node]← ∗
5: Applicable[actual-search-node]←

{o | o ∈ O ∧ Precondition(State[actual-search-node], o)}
6: while True do
7: if actual-search-node = Nil then
8: break
9: end if

10: if State[actual-search-node] ∈ G then
11: break
12: end if
13: if Is-On-The-Actual-Path(State[actual-search-node]) then
14: actual-search-node← Parent[actual-search-node]
15: end if
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Searching with backtracking

Algorithm with circle checking

16: if Applicable[actual-search-node] 6= ∅ then
17: operator← Select(Applicable[actual-search-node])
18: Applicable[actual-search-node]←

Applicable[actual-search-node] \ {operator}
19: State[new]← Apply(State[actual-search-node], operator)
20: Parent[new]← actual-search-node
21: Operator[new]← operator
22: Applicable[new]←

{o | o ∈ O ∧ Precondition(State[new], o)}
23: actual-search-node← new
24: else
25: actual-search-node← Parent[actual-search-node]
26: end if
27: end while
28: if actual-search-node 6= Nil then
29: Solution-Out(actual-search-node)
30: else
31: print „There is not any solution.”
32: end if
33: end procedure
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Searching with backtracking

The algorithm with boundary

1: procedure Backtrack-With-Boundary(〈S, start,G,O〉, bound)
2: State[actual-search-node]← start
3: Parent[actual-search-node]← Nil
4: Depth[actual-search-node]← 0
5: Operator[actual-search-node]← ∗
6: Applicable[actual-search-node]←

{o | o ∈ O ∧ Precondition(State[actual-search-node], o)}
7: while True do
8: if actual-search-node = Nil then
9: break

10: end if
11: if State[actual-search-node] ∈ G then
12: break
13: end if
14: if Depth[actual-search-node] = bound then
15: actual-search-node← Parent[actual-search-node]
16: end if
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Searching with backtracking

The algorithm with boundary

17: if Applicable[actual-search-node] 6= ∅ then
18: operator← Select(Applicable[actual-search-node])
19: Applicable[actual-search-node]←

Applicable[actual-search-node] \ {operator}
20: State[new]← Apply(State[actual-search-node], operator)
21: Parent[new]← actual-search-node
22: Depth[new]← Depth[actual-search-node] + 1
23: Operator[new]← operator
24: Applicable[new]←

{o | o ∈ O ∧ Precondition(State[new], o)}
25: actual-search-node← new
26: else
27: actual-search-node← Parent[actual-search-node]
28: end if
29: end while
30: if actual-search-node 6= Nil then
31: Solution-Out(actual-search-node)
32: else
33: print „Searching without success.”
34: end if
35: end procedure
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Searching with backtracking

Branch and bound
The branch and bound algorithm is suited for searching an optimal
solution of state-space graph.

We search a solution with backtracking that is not lengthier
than a starting bound.
If we find such a solution, we store it, the new bound is the
length of this solution and the searching is continued.

Completeness: The branch and bound algorithm terminates
searching after finitelly many steps. If there are
nonlonger solutions than the starting bound, it
discovers the optimal solution, otherwise the
database will be empty. In the latter case, there may
be only longer solutions in the state-space graph than
the bound. (Either there is not any solution, or the
bound is too small.)

Space Complexity: The database of the branch and bound
algorithm contains no more search node than two
times the bound.
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Searching with backtracking

The algorithm

1: procedure Branch-And-Bound(〈S, start,G,O〉, bound)
2: there-has-already-been-a-solution← False
3: State[actual-search-node]← start
4: Parent[actual-search-node]← Nil
5: Depth[actual-search-node]← 0
6: Operator[actual-search-node]← ∗
7: Applicable[actual-search-node]←

{o | o ∈ O ∧ Precondition(State[actual-search-node], o)}
8: while True do
9: if actual-search-node = Nil then

10: break
11: end if
12: if State[actual-search-node] ∈ C then
13: there-has-already-been-a-solution← True
14: Solution-In(actual-search-node)
15: bound← Depth[actual-search-node]
16: end if
17: if Depth[actual-search-node] = bound then
18: actual-search-node← Parent[actual-search-node]
19: end if
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Searching with backtracking

The algorithm

20: if Applicable[actual-search-node] 6= ∅ then
21: operator← Select(Applicable[actual-search-node])
22: Applicable[actual-search-node]←

Applicable[actual-search-node] \ {operator}
23: State[new]← Apply(State[actual-search-node], operator)
24: Parent[new]← actual-search-node
25: Depth[new]← Depth[actual-search-node] + 1
26: Operator[new]← operator
27: Applicable[new]←

{o | o ∈ O ∧ Precondition(State[new], o)}
28: actual-search-node← new
29: else
30: actual-search-node← Parent[actual-search-node]
31: end if
32: end while
33: if there-has-already-been-a-solution then
34: Solution-Out
35: else
36: print „Searching without success”
37: end if
38: end procedure
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Searching with tree

Searching with tree: an introduction

Let p = 〈S, start,G,O〉 be a state-space reprezentation. In a
search system with tree,

the database contains an explicit subtree of the state-space
graph. The name of this subtree is search tree. The nodes of
the search tree have already been produced by the search
system. The memory stores the nodes and the edges of this
tree and some other information about searching. The data
structure is called "search node record". Each search node
contains:

a state (a node of the state-space graph) s ∈ S;
a pointer to the parent search node record (the state s is the
result of applying an operator o to the state of the parent
search node);
an operator o that has produced s;
a status:

it is closed, if we tried to produce the successor nodes of s;
otherwise it is open.
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Searching with tree

Searching with tree: an introduction

the production rule is the expanding. The expanding increases
the search tree through an open search node. First we apply
all of the applicable operators for the state of this open search
node. So we get some states.

If an arising state is a new state in the search tree (there is not
any search node in it, that contains this state), then we
produce a new open search node from it.
If an arising state is already in one search node record of the
search tree, we work depending of the search strategy.

Finally we remove the expanded node from open nodes, and
put it into the set of the closed nodes.
The control selects a node from the set of open nodes.

If the state of the selected open node satisfies the goal
conditions, we can contruct a solution along the pointers to
the parents.
There is not any solution in the state space graph if the set of
open nodes will be empty.
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Searching with tree

Searching with tree: the algorithm

1: procedure Searching-With-Tree(〈S, start,G,O〉)
2: State[search-node]← start
3: Parent[search-node]← Nil
4: Operator[search-node]← ∗
5: open← {search-node}; closed← ∅
6: while True do
7: if open = ∅ then
8: break
9: end if
10: search-node← Select(open)
11: if State[search-node] ∈ G then
12: break
13: end if
14: Expand(search-node, open, closed)
15: end while
16: if open 6= ∅ then
17: Solution-Out(search-node)
18: else
19: print „There is not any solution.”
20: end if
21: end procedure
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Searching with tree

Types of searching with tree

In the case of the searching in the same state space graph there
are significant differences

1 in the way of selecting. We can select
with exhaustive method

according to the depth of the searching nodes: breadth-first
and depth-first searches;
according to the cost: optimal searching;

with heuristic method
best-first algorithm;
A algorithm;

2 what is happening if the control discovers a new path to a
node of the search tree;

3 when is the test of goal condition.
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Breadth-first and depth-first searches

The Breadth-first and depth-first searches

1 We count the depth of the nodes:

depth(m) 


{
0 if m = start
depth(n) + 1 (n,m) ∈ E .

The control of breadth-first search expands the least deapth
open node.
The control of depth-first search expands the deepest open
node.

2 If the control discovers a new path to a node of the search
tree, the control leaves behind it.

3 We can test a state in the moment producing.
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Breadth-first and depth-first searches

Properties of Breadt-first and Depth-first
Evaluating of the breadth-first search:
Completeness: If there are solutions in the state-space graph, the

breadth-first searching discovers one of them after
finitelly many steps, otherwise the set of open nodes
will be empty.

Optimality: If there are solutions in the state-space graph, the
breadth-first searching discovers the shortest solution.

Space Complexity: The database is great. If the state space graph
is a tree, every node has exactly d children, and the
length of shortest solution is l , the number of the
search nodes of the search tree is:

1+ d + d2 + d3 + . . .+ d l+1 − d ≈ O(d l+1).

Evaluating of the depth-first search:
Completeness: If there are solutions in a finit state-space graph,

the depth-first searching discovers one of them after
finitelly many steps, otherwise the set of open nodes
will be empty.
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Breadth-first and depth-first searches

The Breadth-first algorithm

1: procedure Expand(〈S, start,G,O〉, search-node, open, closed)
2: for all o ∈ O do
3: if Precondition(State[search-node], o) then
4: state← Apply(State[search-node],o)
5: op← Find(open, state)
6: cl← Find(closed, state)
7: if op = Nil and cl = Nil then
8: State[new-search-node]← state
9: Parent[new-search-node]← search-node

10: Operator[new-search-node]← o
11: Depth[new-search-node]← Depth[search-node] + 1
12: open← open ∪ {new-search-node}
13: end if
14: end if
15: end for
16: open← open \ {search-node} closed← closed ∪ {search-node}
17: end procedure
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Breadth-first and depth-first searches

The Breadth-first algorithm

1: procedure Breadth-First-Search(〈S, start,G,O〉)
2: State[new-search-node]← start
3: Parent[new-search-node]← Nil
4: Operator[new-search-node]← ∗
5: Depth[new-search-node]← 0
6: open← {new-search-node} closed← ∅
7: while True do
8: if open = ∅ then
9: break

10: end if
11: search-node← Select({no | no ∈ open ∧

∧ ∀no′(no′ ∈ open ⊃ Depth[no] ≤ Depth[no′])})
12: if State[search-node] ∈ G then
13: break
14: end if
15: Expand(〈S, start,G,O〉, search-node, open, closed)
16: end while
17: if open 6= ∅ then
18: Solution-Out(search-node)
19: else
20: print „There is not any solution.”
21: end if
22: end procedure
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Breadth-first and depth-first searches

The Depth-first algorithm

1: procedure Expand(〈S, start,G,O〉, search-node, open, closed)
2: for all o ∈ O do
3: if Precondition(State[search-node], o) then
4: state← Apply(State[search-node],o)
5: op← Find(open, state)
6: cl← Find(closed, state)
7: if op = Nil and cl = Nil then
8: State[new-search-node]← state
9: Parent[new-search-node]← search-node

10: Operator[new-search-node]← o
11: Depth[new-search-node]← Depth[search-node] + 1
12: open← open ∪ {new-search-node}
13: end if
14: end if
15: end for
16: open← open \ {search-node} closed← closed ∪ {search-node}
17: end procedure
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Breadth-first and depth-first searches

The Depth-first algorithm

1: procedure Depth-First-Search(〈S, start,G,O〉)
2: State[new-search-node]← start
3: Parent[new-search-node]← Nil
4: Operator[new-search-node]← ∗
5: Depth[new-search-node]← 0
6: open← {new-search-node} closed← ∅
7: while True do
8: if open = ∅ then
9: break

10: end if
11: search-node← Select({no | no ∈ open ∧

∧ ∀no′(no′ ∈ open ⊃ Depth[no] ≥ Depth[no′])})
12: if State[search-node] ∈ G then
13: break
14: end if
15: Expand(〈S, start,G,O〉, search-node, open, closed)
16: end while
17: if open 6= ∅ then
18: Solution-Out(search-node)
19: else
20: print „There is not any solution.”
21: end if
22: end procedure
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Optimal searching

The Optimal Search

1 We count the cost of path to the nodes:

cost-of-path(m) 


{
0 if m = start
cost-of-path(n) + cost(n,m) (n,m) ∈ E .

The control of optimal search expands the least cost of path
open node.

2 If the control discovers a new path to a node of the search
tree, the control makes a choice from two pathes. If the new
path has less cost, so that

cost-of-path(n) + cost(n,m) < cost-of-path(m),

the search node will be updated with the new parent, operator
and cost of path. We can not find a new path with less cost
to any cosed node.

3 We can not test a state in the moment producing.
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Optimal searching

Properties of the Optimal search

Evaluating of the optimal searching:
Completeness: If there are solutions in the state-space graph, the

optimal searching discovers one of them after finitelly
many steps, otherwise the set of open nodes will be
empty.

Optimality: If there are solutions in the state-space graph, the
optimal searching discovers the optimal solution.
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Optimal searching

Optimal search algorithm

1: procedure Expand(〈S, start,G,O〉, cost, search-node, open, closed)
2: for all o ∈ O do
3: if Precondition(State[search-node], o) then
4: state← Apply(State[search-node],o)
5: op← Find(open, state)
6: z← Find(closed, state)
7: if op = Nil and cl = Nil then
8: State[new-search-node]← state
9: Parent[new-search-node]← search-node

10: Operator[new-search-node]← o
11: Cost-of-Path[new-search-node]←

Cost-of-Path[search-node] + cost(o, State[search-node])
12: open← open ∪ {new-search-node}
13: else if op 6= Nil then
14: new-cost-of-path←

Cost-of-Path[search-node] + cost(o, State[search-node])
15: if new-cost-of-path < Cost-of-Path[op] then
16: Parent[op]← search-node
17: Operator[op]← o
18: Cost-of-Path[op]← new-cost-of-path
19: end if
20: end if
21: end if
22: end for
23: open← open \ {search-node}
24: closed← closed ∪ {search-node}
25: end procedure
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Optimal searching

Optimal search algorithm

1: procedure Optimal-Search(〈S, start,G,O〉, cost)
2: State[new-search-node]← start
3: Parent[new-search-node]← Nil
4: Operator[new-search-node]← ∗
5: Cost-of-Path[new-search-node]← 0
6: open← {new-search-node}
7: closed← ∅
8: while True do
9: if open = ∅ then

10: break
11: end if
12: search-node← Select({no | no ∈ open ∧ ∀no′(no′ ∈ open ⊃ Cost-of-Path[no] ≤

Cost-of-Path[no′])})
13: if State[search-node] ∈ G then
14: break
15: end if
16: Expand(〈S, start,G,O〉, cost, search-node, open, closed)
17: end while
18: if open 6= ∅ then
19: Solution-Out(search-node)
20: else
21: print „There is not any solution.”
22: end if
23: end procedure



Preliminaries Problem representation Search systems Searching game trees

Best-first algorithm

The Best-first algorithm

1 With our knowledge, we estimate the cost of the remainder
path to a goal node. A so called heuristic function counts this
estimated cost. The control of the best-first search expands
the least heuristic open node.

2 If the control discovers a new path to a node of the search
tree, the control leaves behind it.

3 We can test a state in the moment producing.
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Best-first algorithm

The Best-first algorithm

1: procedure Expand(〈S, start,G,O〉, h, search-node, open, closed)
2: for all o ∈ O do
3: if Precondition(State[search-node], o) then
4: state← Apply(State[search-node],o)
5: op← Find(open, state) cl← Find(closed, state)
6: if op = Nil and cl = Nil then
7: State[new-search-node]← state
8: Parent[new-search-node]← search-node
9: Operator[new-search-node]← o

10: Heuristic[new-search-node]← h(state)
11: open← open ∪ {new-search-node}
12: end if
13: end if
14: end for
15: open← open \ {search-node} closed← closed ∪ {search-node}
16: end procedure
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Best-first algorithm

The Best-firt algorithm

1: procedure Best-First(〈S, start,G,O〉, h)
2: State[new-search-node]← start
3: Parent[new-search-node]← Nil
4: Operator[new-search-node]← ∗
5: Heuristic[new-search-node]← h(start)
6: open← {new-search-node} closed← ∅
7: while True do
8: if open = ∅ then
9: break
10: end if
11: search-node←Select({no | no ∈ open ∧

∧ ∀no′(no′ ∈ open ⊃ Heuristic[no] ≤ Heuristic[no′])})
12: if State[search-node] ∈ G then
13: break
14: end if
15: Expand(〈S, start,G,O〉, h, search-node, open, closed)
16: end while
17: if open 6= ∅ then
18: Solution-Out(search-node)
19: else
20: print „There is not any solution.”
21: end if
22: end procedure
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Best-first algorithm

Properties of the Best-first algorithm

Evaluating of the best-first searching:
Completeness: If there are solutions in a finite state-space graph,

the best-first searching discovers one of them after
finitelly many steps, otherwise the set of open nodes
will be empty.

Space Complexity: The database is not too great, if we have a
good heuristic. If the state space graph is a tree,
every node has exactly d children, and the length of
shortest solution is l , by perfect heuristic, the number
of the search nodes of the search tree is:

1+ d + d + ...+ d = O(l · d).
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Algorithm A

The A algorithm

1 Let us define the evaluation function totalcost-of-path(n) so
that its value at any node n estimates the sum of the cost of
a minimal cost path from the start node s to the node n
(cost-of-path(n)) plus the cost of a minimal cost path from
node n to a goal node (heuristics(n)):

totalcost-of-path(n) = cost-of-path(n) + heuristics(n).
That is totalcost-of-path(n) is an estimate of the cost of a
minimal cost path constrained to go through node n. The
control of algorithm A expands the least totalcost of path
open node.

2 If the control discovers a new path to a node of the search
tree, the control makes a choice from two pathes. If the new
path has less cost, so that

cost-of-path(n) + cost(n,m) < cost-of-path(m),

the search node will be updated with the new parent, operator
and cost of path and, When the search node is a closed node,
it will be an open node again. The algoritm A is going to
expand it once more, and upgrade its children.

3 We can not test a state in the moment producing.
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Properties of the A algorithm

Evaluating of the algorithm A:
Completeness: If there are solutions in the state-space graph, the

algorithm A discovers one of them after finitelly many
steps, otherwise the set of open nodes will be empty.

Optimality: When algorithm A uses a function h that
h(a) ≤ h∗(a) for all a ∈ A, where h∗(a) is the cost of
the minimal cost path from a to a goal state, we call
it the algorithm A∗(read A-star). If there are
solutions in the state-space graph, the algorithm A∗
discovers the optimal solution.
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The A* algorithm

1: procedure Expand(〈S, start,G,O〉, cost, h, search-node, open, closed)
2: for all o ∈ O do
3: if Precondition(State[search-node], o) then
4: state← Apply(State[search-node],o)
5: op← Find(open, state)
6: cl← Find(closed, state)
7: if op = Nil and cl = Nil then
8: State[new-search-node]← state
9: Parent[new-search-node]← search-node

10: Operator[new-search-node]← o
11: Cost-of-Path [new-search-node]←

Cost-of-Path[search-node] + cost(o, State[search-node])
12: Heuristics[new-search-node]← h(state)
13: open← open ∪ {new-search-node}
14: else
15: cost-of-new-path←

Cost-of-Path [search-node] + cost(o, State[search-node])
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The A* algorithm

16: if op 6= Nil then
17: if cost-of-new-path < Cost-of-Path [op] then
18: Parent[op]← search-node
19: Operator[op]← o
20: Cost-of-Path [op]← cost-of-new-path
21: end if
22: else
23: if cost-of-new-path < Cost-of-Path [cl] then
24: Parent[cl]← search-node
25: Operator[cl]← o
26: Cost-of-Path [cl]← cost-of-new-path
27: closed← closed \ {cl}
28: open← open ∪ {cl}
29: end if
30: end if
31: end if
32: end if
33: end for
34: open← open \ {search-node}
35: closed← closed ∪ {search-node}
36: end procedure
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The A* algorithm

1: procedure A-algorithm(〈S, start,G,O〉, cost, h)
2: State[new-search-node]← start
3: Parent[new-search-node]← Nil
4: Operator[new-search-node]← ∗
5: Cost-of-Path [new-search-node]← 0
6: Heuristics[new-search-node]← h(start)
7: open← {new-search-node}
8: closed← ∅
9: while True do

10: if open = ∅ then
11: break
12: end if
13: search-node←Select({no | no ∈ open ∧ ∀no′(no′ ∈ open ⊃

⊃ (Cost-of-Path [no] + Heuristics[no]) ≤
≤ (Cost-of-Path [no′] + Heuristics[no′]))})

14: if State[search-node] ∈ G then
15: break
16: end if
17: Expand(〈S, start,G,O〉, cost, h, search-node, open, closed)
18: end while
19: if open 6= ∅ then
20: Solution-out(search-node)
21: else
22: print „There is not any solution.”
23: end if
24: end procedure
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The A* algorithm

Definition
Let P and Q be two A∗ algorithm! We say, that P is better
informed, than Q, if for all nodes n, except the terminal nodes,

heuristicsP(n) > heuristicsQ(n)

, where heuristicsP and heuristicsQ the heuristic functions of the P
and Q algorithms. (In other words: the P algorithm is estimating
the cost of the remaining path from the bottom in every node
more precesily!)

Theorem
If P is better informed A∗ algorithm than Q, then all the nodes
expanded by P is expanded by Q as well.
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The monotone A algorithm

Definition
We say that a h heuristic function satisfies the condition of
monotone constraints (so it is a monotone heuristic), if for all
(n,m) ∈ E edge

h(n)− h(m) ≤ koltseg(n,m).

Theorem
If a heuristic function satisfies the condition of monotone
constraints, then

h(n) ≤ h∗(n)

for all n ∈ N.
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Algorithm A

The monotone A algorithm

Definition
We call an A algorithm monotone, if the heuristic function is
monotone.

Theorem
If a monotone A algorithm is selecting an open node n for
expanding, then an optimal path has already been found to n, so
cost(n) = cost∗(n).
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Strategy games

To describe a game we have to give
the possible positions of the game,
the number of players,
the way of movements (etc. in parallel or after each),
how much information a player has during the game,
chance, fortune plays a role (and where) or not
what is the start and end position of the game,
how much the players win or lose and when.
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State space representation

Classification of games

classification:
number of players: pl. two-players game;
the game is made of steps or continuous: discrete games;
games are enden after finately many steps or not: finate
games;
information the playsers have: fully-informed games;
what about the fortune: deterministic games;
sum of wins and losses of the players: 0sum games.
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Game theory: an introduction

The games that we consider are two-person, perfect-information
games. These are played by two players who move in turn. They
each know completely what both players have done and can do.
We are intererested in those games where either one of the two
players wins and the other loses or where the result is a draw.
Example games:

tic-tac-toe (http://boulter.com/ttt/index.cgi),
chess (http://en.wikipedia.org/wiki/Chess),
go (http://en.wikipedia.org/wiki/Go_(game)),
checkers (http://www.darkfish.com/checkers/Checkers.html)
and
nim (http://www.archimedes-lab.org/game_nim/nim.html).

We are not going to consider here any games whose results are
determined even partially by chance.
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State space representation of the game
Suppose we call our two players A and B. Let P be a set of the
positions of the game. Let us suppose that it is player A turn to
play first at the position p0 ∈ P. We know the legal moves of the
game: {m | m : P → P}. The game is over at some end positions
and suppose now that one player wins the other loses. A
state-space representation of the game can be defined as the
following tuple:

〈S, start,G,O〉,
where

S = {(p, I) | p ∈ P, I ∈ {A,B} , it is I turn },
start = (p0, A)
G = {(p, I) | p is an end position, I loses (wins) }
O = {om | om(p, I) = (m(p), J), I,J ∈ {A,B} , I 6= J}

The state-space graph of a game is called game graph or tree. In a
game tree at the positions of the even levels it is A turn, and at the
positions of the odd levels it is B turn.
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The MINIMAX algorithm

Our goal in searching a game tree might be to find a good next
move at a position. Input:

〈S, start,G,O〉,
a state (p, I),
a heuristics h : S → R (it estimates the worth of the states),
and a depth.
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The MINIMAX algorithm

The main steps of the algorithm:
1 We build a subtree of the state-space tree from the state

(p, I) until level depth.
2 We estimate the leaves of the subtree with the help of

heuristics: worth(q) = h(q).
3 We continue to evaluation, level by level, until the the

successors of the start state are assigned worth values: if the
children of the state q are q1, . . . , qk , then

worth(q) 

{

max {worth(q1), . . . ,worth(qk)} , if the level of q is even,
min {worth(q1), . . . ,worth(qk)} , if the level of q is odd.

Recommendation: at the position p, the player I should to choose
the move to the best child state.
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The MINIMAX algorithm

1: function Minimax-Step(〈S, start,G,O〉, state, depth, h)
2: max← −∞
3: operator← Nil
4: for all o ∈ O do
5: if Precondition(state, o) then
6: new-state← Apply(state, o)
7: v ← Minimax-Value(〈S, start,G,O〉, new-state, depth− 1, h)
8: if v > max then
9: max← v
10: operator← o
11: end if
12: end if
13: end for
14: return operator
15: end function
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The minimax algorithm

The MINIMAX algorithm

1: function Minimax-Value(〈S, start,G,O〉, state, depth, h)
2: if state ∈ G or depth = 0 then
3: return h(state)
4: else if Player[state] = J then
5: max← −∞
6: for all o ∈ O do
7: if Precondition(state, o) then
8: new-state← Apply(state, o)
9: v ← Minimax-Value(〈S, start, G, O〉,

new-state, depth−
1, h)

10: if v > max then
11: max← v
12: end if
13: end if
14: end for
15: return max
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The minimax algorithm

The MINIMAX algorithm

16: else
17: min←∞
18: for all o ∈ O do
19: if Precondition(state, o) then
20: new-state← Apply(state, o)
21: v ← Minimax-Value(〈S, start, G, O〉,

new-state, depth−
1, h)

22: if v < min then
23: min← v
24: end if
25: end if
26: end for
27: return min
28: end if
29: end function
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