

III. Nuclear models

Lorant Csige Laboratory for Nuclear Physics Hungarian Academy of Sciences

The nuclear "strong" interaction

- Qualitative properties of nuclear interaction based on observations:
 - Short range strong attraction:
 - stable nuclei exist
 - the Rutherford scattering can be explained by the Coulomb-force
 - n-p scattering
 - Repulsive core:
 - saturation effect: 8 MeV/nucleon
 - Spin dependent:
 - parallel spins in deuteron
 - Charge independent:
 - level scheme of mirror nuclei
 - Non-central, tensor forces:
 - quadrupole moment of deuteron
 - Spin-orbit coupling:
 - splitting of energy levels

The origin of the nuclear interaction

 The nuclear interaction is a Van der Waals type, effective interaction, a residual of the fundamental strong interaction between quarks!

The origin of the nuclear interaction

- It can be approximated as a meson-exchange between nucleons
 as electromagnetic interaction in QED: photon exchange between electric charges
 - but $m_{meson} > 0$ (not like m_{photon}) so the range of the interaction is finate!
 - Yukawa predicted π -mesons with m_{π} =279 m_{e}

One-pion-exchange-potential (OPEP)

$$V_{OPEP} \sim g_{pi}^{2} \left(\frac{m_{\pi}}{m_{p}}\right)^{2} m_{\pi} c^{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2} [\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} + S_{12} V_{T}] \frac{e^{-r/t}}{r/R}$$

$$S_{12} \equiv \frac{3}{r^{2}} (\vec{\sigma}_{1} \cdot \vec{r}) (\vec{\sigma}_{2} \cdot \vec{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \qquad V_{T} \equiv 1 + 3 \frac{R}{r} + 3 \frac{R^{2}}{r^{2}}$$

Yukawa potential

 $\phi = -g_N \frac{e^{-r/\lambda}}{r}$, where $\lambda = \hbar/mc$

Why nuclear models?

 A bounded system is described by the wavefunction and the E energy which satisfies the time-independent Schrödinger equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(\boldsymbol{x})\psi = E\psi$$

- Possible stationary states are discrete states having well-defined energy, spin and parity.
- Problem: the Schrödinger equation of a realistic nuclei cannot be solved, because
 - there are too many nucleons in a typical nucleus
 - the interaction is not precisely known, and very difficult
- Solution: using different models with different scope

Liquid-drop model

- Considering the results of charge distribution measurements, $r=r_0A^{1/3}$, which means nucleus is incompressible like a liquid! But also charged..
- $\rho = 10^{14} \text{ g/cm}^3$
- So the binding energy is built up from the following terms:
 - Volume term
 - Surface term
 - Coulomb term
 - Symmetry term
 - Pairing term

Pauli principle

Spin-dependency

Weizsaecker emprical formula:

QM origin

$$\int \frac{(A/2-Z)^2}{A} + \delta A^{3/4}$$

LDM predictions

- Binding energies are quite $OK \rightarrow Masses$, separation energies as well
- The nuclear fission process can be described
- Some properties of some specific excitations can be understood as vibrations of the nuclear surface: see next...

Vibrations in the LDM

 Properties of vibrational states can be understood by LDM (level spacings, spin and parity): only even-even nuclei, vibrations around spherical shape:

 $Y_{1}^{0} = \cos\theta$

 $Y_{0}^{0} = 1$

 $Y_{2}^{0} = 3\cos^{2}\theta - 1$

- Typical vibrational spectrum with equal energy spacings:
 - E=nhw n=1,2,3...
- The frequency however, cannot be matched to the energy of the level!

Giant resonances

- Collective motions, small amplitude oscillations around the equilibrium shape and density (in LDM), where >50% of the nucleons participate
- Described by quantum numbers: spin (electric or magnetic), isospin (isoscalar or isovector), angular momentum (multipolarity)

Giant resonances

 Historically, first observed in photoabsorption cross sections in ⁶³Cu

Problems with LDM

 Magic numbers: fine structure of the binding energies shows significant echancement of binding energy at Z or N=2,8,20,28,50,82,126 → indicating shell structure like in atoms

Problems with LDM

 Deformed nuclei exist (in ground state)! The energy minimum of the LDM is at zero deformation: spherical shape is favorable.

Energy spectrum of many nuclei differs from vibrational

The Fermi-gas model

- LDM calculates only with potential(-like) energies depending on R
- But a particle in a confined space → kinetic energy due to the Heisenberg principle
- Independent particle model: not interacting praticles (fermions with s=1/2) in a spherical potential with radius $R = r_0 A^{1/3}$ and depth $U_0 \rightarrow$ Fermi gas
- The only effect of other nucleons are the confine the nucleons in V

State density in Fermi statistics: (Pauli principle)

p: momentum of nucleon V: volume of nucleus

- Ground state of the nuclues → Fermi-gas at T=0, nucleons are at the deepest one-particle states
- $U_0 = U_{kin} + U_{separation} = 32$ MeV+8 MeV (if N>Z $U_{0(n)} > U_{0(p)}$ due to Coulomb potential)

The Fermi-gas model

- From calculations, the kinetic energy of the nucleus:
 - has volume, surface and symmetry terms
 - means that kinetic energy contributes to the liquid drop potential energies (α , β , ϕ)

- For excitation energies, where kinetic energy of nucleons expected to be larger, Fermi gas model is even more important!
- Qualitative explanation of symmetry energy and saturation

The nuclear shell model

- Magic numbers: fine structure of the binding energies shows significant echancement of binding energy and zero quadrupole moments (thus spherical shape) at Z or N=2,8,20,28,50,82,126→ indicating shell structure like in atoms
- Isotope abundance in nature and systematics of alpha and beta decay also points to shell structure in nuclei
- Shell model of atoms
 - central Coulomb potential
 - weakly interacting electrons

- Shell model of nuclei
 - non central potential
 - nucleons are strongly interacting

?? With these conditions, can we apply shell model at all ??

Approximations:

- But! Pauli principle → in the ground state, nucleons occupy the lowest single particle states → Nucleon nucleon scattering cannot really occur since energy exchange cannot happen due to the occupied states → the mean free path of nucleus is getting large → quasi independent nucleons!
- The effect of the nucleons (on a specific nucleon) by the very short-range interaction can be approximated by a central potential with spehrical symmetry

The nuclear shell model

Nuclear potential

 $\rho_F(r) = \frac{\rho_0}{1 + e^{\frac{r-c}{z}}}$

Experimental density of nuclear material Fermi function

Realistic potential Wood-Saxon potential No analytical solution of Schrödinger equation with Wood-Saxon type

 Harmonic oscillator (for light nuclei) and square-well potential (for heavier nuclei) are good approximations

The nuclear shell model

Nuclear shell model: spin-orbit interaction

- For electrons, this interaction stem from the Dirac equation: magnetic moments of the spin motion and the orbital motion interacts, "couples"
- Goepert-Mayer: For nuclei spin-orbit coupling is not deduced from theory, the strength fitted to experiments
- For given angular momentum I two values depending on the relative direction of s and I:

$V = V(r) + U(r)(\vec{s}\vec{l})$

- So a level with given *l* splits to two levels with $i=l \pm \frac{1}{2}$
- Parallel spin and angular momentum → lower energy (higher interaction energy)
- Splitting is large for large $l \rightarrow$ for l > 4 the sub-levels are in different shells!
- Giving good magic numbers! (see previous slide)
- Far from stability magic number are different ($8 \rightarrow 6$ and $20 \rightarrow 16$)

One-particle shell model

- A closed shell + one valence nucleon
- Gives (in most cases) right ground state spin and parity of spherical odd nuclei
 - total angular momentum is determined fully by the valence nucleon
- Gives right spins and parities of low excitated states of odd nuclei with spherical symmetry
 - hole excitations beside particle excitations
- But what happens if deformation is present?
 - Many valence nucleons can deform the mean field potential

3/2- 3/2+
7/2-
⁴¹ Ca

Deformed shell model

- Nilsson scheme: deformed oscillator potential
- Considering only quadrupole deformation

Deformations - Calculations

Deformations - Calculations

Nuclear Shapes

 $\mathsf{R}(\theta,\phi) = \mathsf{R}_0(1 + \beta \mathsf{Y}_{\lambda\mu}(\theta,\phi))$

 λ =2; β = 0 spherical; β < 0 oblate (disk-like); β > 0 prolate (football-like) λ =3; triaxial, octupole deformed

Extreme deformations

- New shell closures, new magic numbers at very large deformations
 - 2:1 axis ratio : SUPERDEFORMATION
 - 3:1 axis ratio:
 HYPERDEFORMATION
- Experimental technique:
 - gamma spectroscopy (SD)
 - fission resonances (HD)

Nuclear rotations

- Spherical nuclei cannot rotate according to quantum mechanics
- Deformed nuclei can rotate around the axis perpendicular to the nuclear symmetry axis

J is the total angular momentum of the valance nucleons *R* is the angular momentum of the rotation around x *I* is the spin of the nucleus

$$E_{rot} = \frac{\hbar^2}{2\Theta} [I(I+1) + J(J+1) - 2K^2]$$

I=K,K+1,K+2,....

 For even-even nuclei and G.S. band: J=0 and K=0

Nuclear rotations

- Moment of inertia, thus deformation can be determined experimentally from gamma energies
- Equal distances between gamma energies: fence spectrum

$$E_{\gamma} = E_x(I+2) - E_x(I) = \frac{\hbar^2}{2\Theta} (4I+6)$$

The unified nuclear model

- The nucleus can have rotations on top of vibrations
- The possible spins and parities of these rotational states is defined by the type of vibration

