

IV. Radioactivity

Lorant Csige Laboratory for Nuclear Physics Hungarian Academy of Sciences

Types of radioactivity

- α -radioactivity: ⁴He ions
 - short range (a paper absorbs)
 - high ionization power: dangerous in case of incorporation!
- β-radioactivity: e⁻ or e⁺
 - midrange → absorbed by an mm thick Al sheet (40-60 cm in air)
- y-radioactivity: photon
 - energetic electromagnetic radiation from the excited nucleus
 - very long range, low ionization power

Radioactivity: decay law

- A random (statistical) process with constant probability
- The number of decays proportional to the number of radiactive nuclei:

 $N(t) = N_0 e$

- λ is the decay constant: "speed" of the decay
- Mean lifetime (τ): 1/e of nuclei undergo decay $\rightarrow \tau=1/\lambda$
 - level width: $\Gamma=\hbar/\tau$

dN (t

di

- Half life $(T_{1/2})$: half of the nuclei undergo decay $\rightarrow T_{1/2} = \ln 2/\lambda$
- Activity: $a(t) = -\lambda N(t)$
 - unit is Becquerel (Bq): 1 decay / second

Nuclear decay chains

- Naturally occuring radioactive isotopes on Earth (and in our body even!)
- ⁴⁰K is beta-radioactive while the rest is mostly alpha active
- The final products are Pb isotopes (Z=82, shell structure again...)
- Activity of different members within the decay chain can be calculated with differential equations:

 $=\lambda_1 N_1 t$

 $dN_{2}(t)$

Nuclear decay chains

Alpha decay

α-particle is a ⁴He nucleus (⁴He⁺⁺ ion)

• the energy balance of alpha decay and the condition for alpha decay: $Q=M_{\chi}(A,Z)-[M_{\gamma}(A-4,Z-2)+M_{He}(4,2)]>0$ (from LDM $\rightarrow Z>73$)

- α-decay of ²²⁶Ra
- α-particle energy is determined by the initial and final states
- transitions to higher (excited) levels are possible (mostly to low lying rotational states of deformed daughter nuclei) but with quickly decreasing probability
- 4 MeV < E_{α} < 9 MeV while 10⁻⁷ s < $T_{1/2}$ < 10¹⁰ year (!!)
- relation between E_{α} and $T_{1/2}$ within the 3 natural decay chains is the Geiger-Nuttall rule (1911)

$lg \lambda = a \cdot lg E_{\alpha} + b$

where a is the same for all chains, b is not

Alpha decay – quantum tunnelling

- *Gamow*: understanding the Geiger-Nuttall rule within quantummechanics
- From the solving the Schrödinger equations in the 3 different region (where $U_0 < E [1-3]$ and $U_0 > E [2]$)

 $\Delta \Psi + (2m/\hbar^2)(E-V)\Psi = 0$

transition probibility

• If $U_0 = Z_{nucleus} z_{\alpha} e^2/r$ is the Coulomb potential (3 dimensional) and E_{α} is the energy of the α -particle \rightarrow GN rule can be understood

 If I_α>0 (if it is allowed, see next)→ probability is decreased by the centrifugal barrier:

Alpha decay

- Controlled by the strong force
- Kinematics: momentum conservation
 - $|p_{\alpha}| = |p_{daughter}| \rightarrow E_{\alpha} = Q_{\alpha}[M_{daughter}/(M_{daughter} + M_{\alpha})] (\rightarrow E_{daughter} \text{ is typically small: } \sim 2\%)$
- **P** parity and **T** isospin is conserved \rightarrow selection rules
 - $T_{\alpha} = 0 \rightarrow \text{parent and daughter nuclei have the same isospin}$
 - $P_{\alpha} = +1 \text{ and } I_{\alpha} = 0 \rightarrow |I_{p} I_{d}| \le I_{\alpha} \le |I_{p} + I_{d}| \text{ and } P_{p} = (-1)^{l_{\alpha}} P_{d}$
- Some remarks:
 - From D to λ : $\lambda = PvD$ (P: probability of an α formation within the nucleus and ν: the frequency of the α particle "hitting" the surface) →

- A forbidden alpha transition is not "absolutely" forbidden (but decreased in probability by a factor of 10⁷-10¹⁴)
- Centrifugal barrier is not so large \rightarrow only little dependence on I_{α}

Alpha decay systematics

• Large Q at N=128 \rightarrow shell structure

- Transmutation of an unstable nucleus to an isobar one with $\Delta Z = \pm 1$
- Condition: $E_{\beta} = [M_{at}(A,Z) M_{at}(A,Z+1)]c^2$ and $E_{\beta} = [M_{at}(A,Z) M_{at}(A,Z-1) 2m_e)]c^2$
- Experimental observations: $0.02 < E_{B} < 16$ MeV and 10^{-2} s $< T_{1/2} < 10^{15}$ years

- Experimental tecnique: magnetic spectrometers
- Instead of $E_{\beta} = \Delta E$ a continuous E_{β} is measured with $0 < E_{\beta} < \Delta E!$
- maximum yield is at $E_{max}/3$ (for natural radioactivity $E_{\beta}=0.25-0.45$ MeV)
- more symmetric β -spectrum for light nuclei: $E_{max}/2$

- Explaining the continuous E_β spectrum:
 - monochromatic e⁻ are emitted, but scattering on the electron "clouds" of atoms
 - no energy conservation in β decay....
 - W. Pauli (1931): a third particle takes away the missing energy!
 - the particle should have zero charge (charge conservation), small mass and $s=1/2\hbar$

• Szalay – Csikai experiment (1956):

- indirect observation of neutrino
- momentum conservation should be statisfied
- photon of a decay in a Wilson cloud chamber in Debrecen
- (unfortunatelly published only in 1957)

neutrino hypoteses

• Reines and Cowan (1956): inverz beta decay of neutrons

\widetilde{v}_e + proton \rightarrow n + positron

- A, B volumes: $CdCl_2$ water-solution \rightarrow Cd neutronabsorber, water moderator
- I and II and III volumes: liquid scintillator material (1 m³)
- Triple coincidences of
 - the positron annihilation (2x511 keV y photon)
 - neutrons, after moderation, are absorbed by Cd which gives delayed γ photons
- Cross section was determined to be $\sigma = 10^{-43} \text{ cm}^2 \rightarrow 10^{17} \text{ km}$ mean free path in condensed material...

Beta decay: an example

- decay scheme of ⁴⁰K: both type of beta decay!
- transitions to higher levels \rightarrow gamma decay

• Fermi (1934): understanding the beta spectrum

 $P(E)dE = 2\frac{\pi}{t}|H_{i,f}|^2\rho(E)dE$

- beta decay lifetime is typically long \rightarrow the interaction is weak \rightarrow perturbation theory can give the transition probability
- electron and neutrino can be in all the quantum states with equal probability
- the probability of emitting an electron with E E+dE energy:

p(E): final state density H_{in} transition matrices (depend on the initial, the final state and the interaction)

$\rho(E) = \sqrt{E^2 - m^2 c^4} \sqrt{(E_0 - E)^2 - m_v^2 c^4 E(E_0 - E)}$ (if m_v=0 than simpler)

- Spectrum starts at mc² (E is the total energy above)
- Coulomb correction: nucleus is positively charged → attracts electrons, pushes positrons → spectrum is shifted / distorted
- Fermi introduced a factor: F(Z,E)

Beta decay theory

- for allowed beta decay, it is linear
- E₀ is defined by the crossing with the X-axis E_e
- if neutrino has mass, than the electron energy end-point differs from E_0 by $m_v c^2$
- see the scale!!

Beta decay: theory

• Total probability of beta decay:

 $\lambda = \frac{1}{\tau} = f(Z, E_0) = \int \rho(E) F(Z, E) dE \approx \int E^4 dE = E_0^5$

 $f(E_0)\tau \rightarrow comparative half$ life is constant for superallowed, allowed, and forbidden transitions

•

transition type	log(ft)	
superallowed	2.9-3.7	
allowed	4.4-6.0	
first forbidden	6.0-10	
second forbidden	10-13	

constant

Beta decay: theory

• Allowed transitions: I=0 and $P_1=P_2$

- Fermi transition: $s_e + s_v = 0$ (spins are antiparallel)
- Gamow-Teller transition: $s_e + s_v = 1$ (spins are parallel)
 - Sun: $2p \rightarrow d + e^+ + v$
 - Pauli principle: s(2p)=0 but s(d)=1 !!
 - Fermi transition is not possible.
- Forbidden transitions: I > 0 and/or $P_1 \neq P_2$
 - transition probability is very small
 - Kurie plot is deviated from linear
 - charaterized numerically by the lg(Ft) value

Double beta decay

 Sometimes energetically beta decay is not allowed between even-even isobars → but it is for Z+2!! → double beta decay is allowed

(if $v \neq v$) $2v\beta\beta$: $2n \rightarrow 2p+2e^{-}+2v$ (if v=v) $0v\beta\beta$: $n \rightarrow p+e^{-}+\overline{v} + n \rightarrow p+e^{-}$

- N(E) gives the transition energy E0
- Neutrino is a majorana particle? Very intense research field today!

Beta decay: parity violation

• C. Wu experiment (1956):

- in strong and EM interaction parity is conserved
- what about weak interaction, in beta decay?

$^{60}Co \rightarrow ^{60}Ni+e^{-}+v+2\gamma$

- Top science, top technology!
 - needed high magnetic field (10T), and very low temperature to align ⁶⁰Co spin
 - T=0.003K (!!) was achieved by adiabatic cooling
- Result: e⁻ emission preferred the direction which is opposite to the ⁶⁰Co spin!!

Neutrino physics

- R. Davis (1969): measured the solar neutrino flux
- Sun is an extreme source of neutrinos: 64 billions of neutrinos per second per 1cm² !!
 - But very low cross section: 10¹⁷ m
- pp-cycle: 98.5% of power (rest is CNO cycle)
 - allmost all neutrinos are low energy E<0.42 MeV
 - but ⁸B and ⁷Be neutrinos are energetic: E<14 MeV

- The experiment was at Homestake mine with 615 tons of tetrachlore-etan, C_2Cl_4 a cleaning fluid
- $^{37}\text{Cl} + \nu_{e} \rightarrow ^{37}\text{Ar} + e^{-}$ E>0.814 MeV
- ³⁷Ar decay was detected
- Measured 0.48 atoms/day instead of 1.5 atoms/day

Neutrino physics

- Further experiments:
 - Solar and atmospheric: Super-Kamiokande, Japan, 1998
 - Solar neutrinos: Sudbury Neutrino Observatory, Canada, 2001
 - sensitive to all type of neutrinos

- Solution: neutrino oscillations
 - electron, muon and tau neutrinos can transform to each other
 - detectors are sensitive only to electron neutrinos → the rest is "missing"
 - But! Oscillation only can take place if at least one of the neutrinos has mass!
- KamLAND experiment, 2005-2008

γ decay

- Excited states of a nucleus \rightarrow de-excitation by γ photon emission
- Electromagnetic radiation with short wavelength (10^{-8} > λ > 10^{-11} cm)
- Excitation is due to a) a (typically very low lying excited states with E_{γ} < 0.5 MeV \rightarrow quantum tunneling properties) b) β -decay to excited states or b) nuclear reactions (high energy exciations)

- ¹¹⁵In 1200 5/2+ 1078.16 0.99 ps 1000 -800 Energy (keV) 597.14 3/2-600-<0.25 ns 400 -336.24 1/2-4.49 hr 200-**Delayed fluorescence** 0.0 9/2-ΕO Scattering Prompt fluorescence
- One photon de-excitation ↔ γ cascades
- 10 keV < E_v < 5 MeV and 10⁻¹⁶ < $T_{1/2}$ < 10⁻⁸
- some exceptions: e.g. ⁷Li + p \rightarrow ⁸Be + γ
 - $E_{\gamma} = 17$ MeV (nucleon emission is forbidden by parity / angular momentum conservation)

gamma decay

- Energy and momentum conservation: $\mathbf{p}_{v} + \mathbf{p}_{M} = 0$ and $\mathbf{E}_{1} \mathbf{E}_{2} = \Delta \mathbf{E} = \mathbf{E}_{v} + \mathbf{E}_{M}$
- Recoil energy of the nucleus:

(typically $\sim 0.1 - 10 \text{ eV}$)

Negligible. But not in Mössbauer spectroscopy!

• angular momentum conservation: selectrion rules

$|I_1 - I_2| \equiv \Delta I \leq l \leq I_1 + I_2$

- I=1 dipole; I=2 quarupole; I=3 octupole radiation (no monopole radiation, photon spin is $1\hbar$) \rightarrow multipolarity is from angular distribution
- polarisation: electric (E) and magnetic (M)
- parity conservation: $P_1/P_2 = (-1)^{\dagger}$ (electric transtion) and $P_1/P_2 = (-1)^{\dagger+1}$ (magnetic)

gamma decay

 γ decay probability strongly depends on the *I* multipolarity and E_{γ} transition energy:

- increasing I \rightarrow decreasing transition probability (by a factor of 10⁻⁴)
 - dipole and quadrupole radiations dominate
 - large spin-difference in nucleus → gamma decay probability is small (isomeric state)
 - transitions in a rotational band: cascades!
- for given I magnetic transition probabyility is 10²-10³ smaller than electric
- Weisskopf estimates: relation between E_{v} and $T_{1/2}$ for different multipolarities

Multipole	icar motion A and the call	M mon an
1	$\lambda(s^{-1})$	$\lambda(s^{-1})$
1-1-51-52-534	$1.03 \times 10^{14} A^{2/3} E_{\gamma}^3$	$3.15 \times 10^{13} E_{\gamma}^3$
2 awob asb	$7.28 \times 10^7 A^{4/3} E_{\gamma}^5$	$2.24 \times 10^7 A^{4/3} E_{\gamma}^5$
3 anomiana	$3.39 \times 10^1 A^2 E_{\gamma}^7$	$1.04 \times 10^1 A^{4/3} E_{\gamma}^7$
4 and add a	$1.07 \times 10^{-5} A^{8/3} E_{\gamma}^9$	$3.27 \times 10^{-6} A^2 E_{\gamma}^9$
5	$2.40 \times 10^{-12} A^{10/3} E_{\gamma}^{11}$	$7.36 \times 10^{-13} A^{8/3} E_{\gamma}^{11}$

$\begin{aligned} |I_1 - I_2| &\equiv \Delta I \leq l \leq I_1 + I_2 \\ |I_1 - I_2| &\equiv \Delta I \leq l \leq I_1 + I_2 \end{aligned}$

gamma decay: level scheme

- arrows: thickness give the probability
- spin and parity, transition energies, level energy, branching ratios

gamma decay

- Internal conversion: if gamma decay is forbidden (like isomeric states)
 - direct de-excitation by emitting a K electron
 - e.g $0^+ \rightarrow 0^+$ transition
 - internal conversion coefficients for K, L, M electrons: extracting multipolarity of the transitions!
 - $E_{e} = E_{\gamma} E_{\kappa(LM)}$
- Internal pair creation:
 - electron-positron pairs are created

Mössbauer effect

$=\frac{E_{y}^{2}}{2M_{N}c^{2}}$ due to momentum conservation

- emitted $E_{\gamma} < E_{transition}$ while excitation needs a bit larger $E_{\gamma} \rightarrow$ if identical nuclei are in rest and free, no absorbtion can be observed due to recoil
- If nuclei are in a solid crystal → phonons -vibrations of crystal lattice with discrete energy- can be emitted → if no phonon, then absorption and emission is recoilless due to large (M momentum conservation with a crystal as a whole)
- "recoilless nuclear resonance fluoresence"
- Mössbauer spectroscopy:
 - source and sample material is the same (as crystal)
 - source is moving with velocity $v \rightarrow$ Doppler shift

Mössbauer spectroscopy

- A typical experiment: changing (scanning) the velocity of source with a linear motor → and see the resonance absorbtion lines → Intensity vs. velocity is measured (typically ±10-20 mm/s)
- Energy resolution is extremely good: up to $dE/E = 10^{-13}$!!
- Isomer shift, quadrupole splitting and hyperfine splitting can be measured

