

VII. Nuclear Fission and Fusion

Lorant Csige Laboratory for Nuclear Physics Hungarian Academy of Sciences

Nuclear binding energy: possibility of energy production

Nuclear Fusion

- Some basic principles:
 - two light nuclei should be very close to defeat the Coulomb repulsion → nuclear attraction: kinetic energy!!
 - not spontenious, difficult to achieve in reality
 - advantage: large amount of hydrogen and helium + solutions without producing any readioactive product

Nuclear fusion in stars

- proton-proton cycle: ~ mass of Sun, many branches
 - first step in all branches (Q=1.442 MeV): $p+p \rightarrow {}^{2}H+e^{+}+v_{p}$
 - diproton formation (and immediate decay back to two protons) is the ruling process
 - stable diproton is not existing → proton proton fusion with instant beta decay!
 - very slow process since weak interaction plays role → cross section has not yet been measrued experimentally (one proton "waits" 9 billion years to fuse)
 - second step: ${}^{2}H+{}^{1}H \rightarrow {}^{3}He + \gamma + 5.49 \text{ MeV}$
 - very fast process: only 4 seconds on the avarage
 - ³He than fuse to produce ⁴He with three (four) differenct reactions (branches)
 - − ppl branch: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H} + 12.86 \text{ MeV}$
 - ppll branch:
 - ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$
 - $^{7}\text{Be} + \text{e-} \rightarrow ^{7}\text{Li} + \text{v}_{e}$
 - $^{7}\text{Li} + {}^{1}\text{H} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - ppIII branch: only 0.11% energy of Sun, but source of neutrino problem
 - ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$
 - ${}^{7}\text{Be} + {}^{1}\text{H} \rightarrow {}^{8}\text{B} + \gamma \rightarrow {}^{8}\text{Be} + e^{+} + v_{a} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - − ppIV branch (hypotetical): ${}^{3}\text{He} + {}^{1}\text{H} \rightarrow {}^{4}\text{He} + {}^{e} + {}^{v}$

Nuclear Fusion in Stars

- protons fuse C, N, O are only catalysts
- 4p + 2e⁻ → ⁴He + 2e⁺ + 2e⁻ + 2v_e + 3γ + 24.7 MeV
- four different branches:
 - temperature (thus size) dependent

Fusion reaction in stars – Gamow window

Fusion reaction in laboratory

Lawson criterion

• Energy balance of nuclear fusion:

 rate of energy produced by fusion and energy losses in plasma

minimum condition to have a productive fusion

 τ_{E} : confinement time of electron plasma

 $\frac{1}{4} n^{2} \langle \sigma v \rangle E_{ch} \geq \frac{1}{\tau_{E}}$ fusion reactions
per volume per
energy losses in
plasma

per volume per p time energy of the charged fusion products (3.5 MeV for D-T) $n\tau_E > 1.5 \cdot 10^{20} \frac{s}{m^3}$

for D-T fusion at T=26 keV

Fusion reactors

- Two approched to fulfil the Lawson criterium:
 - inertial fusion by ultra-high power fast lasers (fast, high density plasma)
 - magnetic confinement (slow, low density plasma)

TOKAMAK

ITER

•

- inertial fusion by ultra-high power fast lasers (fast, high density plasma)
- magnetic confinement (slow, low density plasma)

Nuclear fission - history

- First expectation: fission of heavy nuclei \rightarrow energy is released
- Released energy is appear mostly as kinetic energy of the products
- From N/Z as a function of A \rightarrow products are neutron-rich nuclei $\rightarrow \beta$ active
- Neutrons are emitted promptly and also some times later → delayed neutrons

Kinetic energy of fission fragments	168 MeV
Energy of fission neutrons	5 MeV
Energy of prompt gamma photons	7 MeV
Energy of particles from fragments	8 MeV
Energy of gamma photons from fragments	7 MeV
Energy of antineutrinos from fragments	10 MeV

- Properties, measurables in fission:
 - mass, charge, kinetic energy distributions of fission fragments
 - neutron multiplicity, neutron spectrum
 - number and energy of delayed neutrons
 - energy spectrum of prompt gamma photons

Fission cross sections of ^{235,238}U

• Fissile nuclei (²³⁵U):

- fission at thermal neutron energies
- $-\sigma_{f} \sim 1/v_{n}$ for thermal energies

Fertile nuclei (²³⁸U):

- fission only at fast neutron energies (E_n
 > 1 MeV)
- by thermal neutron capture, new fissile nuclei are produced:

 ${}^{238}\mathsf{U}(\mathsf{n},\!\gamma) \rightarrow {}^{239}\mathsf{U}(\beta\text{-}) \rightarrow {}^{239}\mathsf{Np}(\beta\text{-}) \rightarrow {}^{239}\mathsf{Pu}$

 232 Th(n, γ) \rightarrow 233 Th(β -) \rightarrow 233 Pa(β -) \rightarrow 233 U

Theory of nuclear fission

• Bohr and Wheeler (1939): using liquid-drop model

 $Q_{f} = \Delta W_{h} + \Delta W_{l} - \Delta W_{n}$

$$\Delta W = \alpha A + \beta A^{2/3} + \gamma \frac{Z^2}{A^{1/3}} - \xi \frac{(A/2 - Z)^2}{A} + \delta A^{-3/4}$$

for asymmetric fission:

$$A_{h} = \frac{Z_{h}}{Z_{l}} = \frac{3}{2}$$
 $A(Z)_{h} = \frac{3}{5}A(Z)$

if neglecting the last term:

$W_{sf} = \beta (3A/5)^{2/3} + \beta (2A/5)^{2/3} = 1.25 W_s$

surface energy is increasing in fission

 $W_{Cf} = 0.64 W_{C}$ Coulomb energy is decreasing

$Q_f = 0.36 W_c - 0.25 W$

 $Q_f = W_s + W_c - W_s$

• For ²³⁸U fission it predicts $Q_f = 180 \text{ MeV} (+Q_b = 20 \text{ MeV})$

Theory of nuclear fission: fission barrier

• So if $Q_f > 0$ fission is energetically favorable:

Bohr-Wheeler fissility parameter

- Q_f is increasing with increasing fissility parameter
- However, fission was observed only for Th, Pa, U isotopes!!
- Energetically favorable DOES NOT mean energetically allowed
 - as in the case of alpha decay: energetically favored for heavy nuclei but classically forbidden by the Coulomb barrier (→ quantum tunneling)
- The mechanism: vibration is stabilized by the surface tension until vibration is large

Fission barrier systematics

- For transuranium isotopes Z²/A > 49 → fission barrier disappears!
- With increasing Z²/A, the fission barrier is quickly increasing
 - spontanious fission through the fission barrier
 - long lifetime:
 - ²³⁸U → 4.468·10⁹ years
 - $^{252}Cf \rightarrow 2.645$ years
- At the region of the actinides the barrier height ~ 6-7 MeV → neutron separation energy

Theory of fission: fission barrier

- Fission barrier calculated by liquid drop model + microscopic shell corrections
- A 2nd local minimum appear for light actinides (Th, U isotopes)
 - isomeric states in the second potential minimum: highly deformed states with large excitation energy and long lifetime
 - isomeric (delayed) fission
 - investigation of strongly deformed nuclear states
 - gamma decay back is also possible

Mass distribution in fission

Product Mass Number

- At low excitation energy, the fission fragment mass distribution is very asymmetric
- Increasing excitation energy → the fragment mass distribution is getting symmetric

 One of the most compelling open question in the physics of fission:

Why asymmetric fission is favored?

 Possible explanation: shell effects controls the formation of fragments
 → no experimental proof yet... (only qualitive considerations)

Reactor physics - Basics

 In nuclear fission, energy is released as kinetic energy of the fragments (200 MeV) and neutrons are emitted

- Some terms in reactor physics:
 - multiplication factor k_{eff} and reactivity p:
 - if $k_{eff} < 1$: reactor is sub-critical ($\rho < 0$) \rightarrow reactor shutdown
 - if $k_{eff} = 1$: reactor is critical ($\rho = 0$) \rightarrow normal operation of a reactor
 - if $k_{eff} > 1$: reactor is supercritical ($\rho > 0$) \rightarrow starting a reactor, bomb
 - ρ measures how far we are from criticality

- Condition for self-sustainable energy production:
 - On the avarage, more than one neutron has to be produced in one fission
 - Avarage number of fission neutrons in 235 U: $<v_n>=2.5$
 - From the produced, more than one neutron has to induce fission

nuclear chain reaction

Reactor physics - Control

- Neutrons that are released immediately after the fission occurs are referred to as prompt neutrons → time scale of prompt neutrons "life" does not allow any interaction by the controls
- Fission products are radioactive → following radioactive decay, some daughter nuclei may have sufficient energy to release additional neutrons called delayed neutrons:
 - time scale of delayed neutrons "life" are determined by the half life of the radioactive fission product (2-3 seconds) → control is possible
- A reactor is designed to be sub-critical for prompt neutrons but critical for prompt neutrons + delayed neutrons
- Control is possible by absorbing delayed neutrons: ¹¹³Cd and ¹⁰B (fast *n*)

Group	Half-Life (s)	Decay Constant (s ⁻¹)	Energy (keV)	Yield, Neutrons per Fission	Fraction
1	55.72	0.0124	250	0.00052	0.000215
2	22.72	0.0305	560	0.00346	0.001424
3	6.22	0.111	405	0.00310	0.001274
4	2.30	0.301	450	0.00624	0.002568
5	0.610	1.14	-	0.00182	0.000748
6	0.230	3.01	-	0.00066	0.000273

Reactor physics: moderator

- Prompt neutron energy spectrum:
 - <E_>=0.7 MeV
 - most of the prompt neutrons are fast neutrons \rightarrow (n,f) cross sections is small!
 - we need to reduce the energy of the neutrons to thermal energies (< 1 eV)

MODERATION

Material	#coll 1MeV-1eV	Σ _s (1/cm)	Σ _a (1/cm)	Σ _s /Σ _a
H ₂	14	1.2	0.015	80
D ₂	20	0.2	0.00002	100000
H ₂ O	15	1.47	0.019	71
D ₂ O pure	23	0.29	0.00003	5700
D ₂ O(99.8%)	23	0.29	0.00017	2500
Be	65	0.75	0.001	143
С	86	0.38	0.0003	192

A good moderator is:

•

- slowing down neutrons quickly (i.e. in a few collisions)
- week neutron absorbtion

Reactor physics

