

VI. Nuclear Reactions

Lorant Csige Laboratory for Nuclear Physics Hungarian Academy of Sciences

Nuclear reactions

- Observables in nuclear reactions: \bullet
 - defined by external parameters: bombarding energy, potential barriers
 - defined by internal "parameters": nuclear structure and reaction mechanism
- Basic reaction mechanisms: direct reaction and compound reaction •
 - time evaluation is different
 - these are extremities: real reactions are mixed in nature
- **Reaction channels:**
 - $a + A \rightarrow (C^*) \rightarrow A + a$
 - $a + A \rightarrow (C^*) \rightarrow A^* + a'$
 - a + A → (C*) → B + b
 - $a + A \rightarrow (C^*) \rightarrow C + \gamma$

incoming outgoing channel channel

- elastic scattering
 - inelastic scattering
 - A(a,b)B reaction
 - radiative capture

Direct reactions:

interaction time is short (10⁻²² s)

only a few nucleon is involved in the process

- Compound reactions:
 - interaction time is long (10⁻¹⁹- 10^{-16} s)
 - two-step process: forming a compound nucleus, then decay

Conservation laws

- Electric charge
- Barion charge: total number of nucleons are conserved in the reactions
- Momentum conservation: in a fixed target experiment $\rightarrow \mathbf{p}_{a} = \mathbf{p}_{B} + \mathbf{p}_{b}$
- Energy conservation: energy balance of nuclear reactions
 - $(m_{a} + m_{A})c^{2} + E_{a} + E_{A} = (m_{b} + M_{B})c^{2} + E_{b} + E_{B}$

reaction energy: $Q = (E_B + E_b) - (E_A + E_a) = (m_b + M_B)c^2 - (m_a + m_A)c^2$

- if Q>0 then reaction is exoerg (e.g. $D+T \rightarrow {}^{4}He + n \rightarrow Q=17.6 \text{ MeV}$)
- if Q<0 then reaction is endoerg (e.g. ${}^{14}N + {}^{4}He \rightarrow {}^{17}O + p \rightarrow Q=-1.19$ MeV), then the treshold energy is the laboratory system is: $E_{a,min} = Q(M_A + m_a)/M_A$
- angular momentum conservation:
 - $I_A + I_a + I_{Aa} = I_B + I_b + I_{Bb}$ where I_{Aa} and I_{Bb} are relative orbital angular momentum
 - if relative angular momentum is 0 → angular distribution of the reaction products has spherical symmetry in the center-of-mass system!

Centrifugal and Coulomb barrier

- Classic impact condition:
 - $|\mathbf{p} \times \mathbf{\rho}| \le \mathbf{p} \mathbf{R} = \sqrt{(2\mathbf{m} \mathbf{E})} \mathbf{R}$
 - quantization: $|\mathbf{p} \times \mathbf{p}| \rightarrow |\mathbf{l}\hbar|$
- Given $E \rightarrow (l\hbar)^2 \le 2mER^2$
 - limitation on l

 $l_{max} = \frac{R}{\lambda_n} \approx R(fm) \frac{\sqrt{E_n(MeV)}}{4.55}$

for neutrons (for I=0, can interact with any E!!)

• Given $I \rightarrow$

centrifugal potential (in QM)

centrifugal barrier

Centrifugal and Coulomb barrier

Coulomb barrier: in case of charged particles → centrifugal + coulomb

 $B_c(MeV) = V_c(r=R) = \frac{Zz}{A^{1/3}}$

-			
A	$B_{cf}(l=1)$ MeV	B_C (z = 1) MeV	$B_{cf} + B_C \mathrm{MeV}$
1	20	1	21
8	5	2	7
27	2.2	4.4	6.6
64	1.2	8	9.2
125	0.8	10	10.8
216	0.6	15	15.6

• Light nuclei $\rightarrow B_{cf}$ dominates; heavy nuclei $\rightarrow B_{c}$ dominates

Conservation laws (cont.)

Parity is conserved in nuclear reactions (but not in beta-decay!):

 $- P_{a}P_{A}(-1)^{laA} = (P_{C^{*}}) = P_{b}P_{B}(-1)^{lbB}$

if C* has definite parity \rightarrow the angular distribution of b and B in the center of mass system has backward-forward symmetry

in elastic scattering $\rightarrow I_{bB} = I_{aA} \pm 2, \pm 4, ...$

- Isospin is conserved in nuclear reactions:
 - $T_a + T_A = (T_{C^*}) = T_b + T_B$
 - special cases: $T_a=0$ and $T_b=0$ [e.g.: (a,a) (d,d) (a,d) reactions]

Neutron-induced reactions

 Neutron induced reactions are of great importance since only strong interaction is involved (no electromagnetic processes)

(n,n) elastic scattering, Q=0:

neutron detectors and moderators in nuclear reactors

- (n,n') inelastic scattering, Q<0
- (n,γ) radiative capture, Q>0:
 - cross section can be extremely high for low energy (and thermal) neutrons (<0.5 MeV) → 113 Cd rods and 135 Xe (fission product) poison
- (n,p) usually Q>0 since $m_n > m_p$:
 - in atmosphere: ${}^{14}N + n \rightarrow {}^{14}C + p$ (radiocarbon dating!)
- (n,a) and (n,2n) (n,3n): Q can be very high \rightarrow neutron detection
- (n,f) neutron-induced fission, Q=200 MeV (for ²³⁸U): see later....

Cross section of reactions

nuclear reaction rate: number of reaction per unit time and volume

- microscopic cross section is characteristic to the different reaction channels
- cross sections typically depends strongly on bombarding energy
- differential and integral cross sections: in the function of energy or/and angular distribution of the outgoing particles

Excitation functions

• Cross section of reactions depend on the bombarding energy: $\sigma(E)$

- neutron: at low energies the dependency is $\sim 1/v = 1/\sqrt{E}$
- charged particle: Coulomb barrier \rightarrow first increasing with E \rightarrow after a maximum it is decreasing

Total neutron cross sections

- All the possible processes are included: absorption and scattering
 - measuring without sample: I_0 and with sample: I the ratio I/I0 is determined
 - quite "simple" measurements

$$I = I_0 e^{-nl\sigma_T} \qquad \qquad \sigma_T = \frac{1}{nl} \ln \frac{I_0}{I}$$

Total neutron cross sections

• First results: very narrow resonances in the excitation function $\sigma_T(E_n)$ were observed at low energies

- From $\tau = \rightarrow \tau = 10^{-14}$ s which is long compared to the characteristic time of interaction (10⁻²² s~speed of nucleons within the nuclus)
- N. Bohr: compound nucleus model
 - kinetic energy + separation energy is spreading by collisions of nucleons → the incoming particle become indistinguishable from target nucleus → complete thermal equilibrium
 - quasi stationary state
- Decay of compund nucleus: by gamma emission (thermal energy) and by neutron emission (higher energy)

Total neutron cross section

• Cross section of compound nucleus formation is:

 $E_r^{1} = E_r^{2} + (\Gamma/2)^2$ $E_r^{2} = E_r^{2} + (\Gamma/2)^2$ $E_r^{2} = E_r^{2} = E_r^{2}$

multiplicity of the initial and final state

• So the cross section of radiative capture is:

 $\sigma(n,\gamma) = \sigma \frac{\Gamma_{\gamma}}{\Gamma} = \pi \lambda^2 g \frac{\Gamma_n \Gamma_{\gamma}}{(E - E_r)^2 + (\Gamma/2)^2}$

Breit-Wigner formula

if E<<E_r (and E-E_r >> Γ) $\sigma \sim 1/v !!$

• In the resonance region is $E_n < 1 \text{ MeV}$

Total neutron cross section

Maxwell evaporation spectrum

Optical model

• Understanding the total neutron cross section at E_n>1 MeV

- interaction between fast neutron with reduced wavelength λ and nucleus is similar as light absorption and diffraction on a black disc
- the total cross section with this (classic limit) approximation:

 $\sigma_T = \sigma_s + \sigma_r = \pi (R + \lambda)^2 + \pi (R + \lambda)^2 = 2\pi (R + \lambda)^2$

(elastic scattering + inelastic processes)

- good approximation: $10 < E_n < 50 \text{ MeV} \rightarrow \pm 10\%$ precision!!
- Systematic measurements show moderate amplitude oscillations, but in principle the same energy dependece for neighbouring nuclei (in contrast to the resonances which are totally different from nucleus to nucleus)
 - maxima shifts towards higher energies with A

Optical model

• Weisskopf and Feshbach proposed a reaction model to describe $\sigma_T(A,E)$

- optical analog: light on a semi transparent medium \rightarrow absorption and diffraction
- "translating" into quantum mechanics
- similiar to shell model description → introducing a mean-field potential (instead of individual nucleon-nucleon interactions)
- the potential has a real and a complex part to deascribe scattering and absoprtion, respectively:

U = Vf(r) + iWg(r)

 $f(r) = \frac{1}{\frac{r-R}{a}}$

Woods-Saxon potential

 Solving Schrödinger equation with U → δ[±]₁ phase-shifts (of neutron waves in the nucleus) can be deduced → cross sections can be determined:

 $\sigma_s = \pi \lambda^2 \sum_l (2l+1)(1-\eta_l)^2$

parameters (V, W, R, a) are fitted to the experimental cross sections

with

 parameters are not varying fat → one can use these parameters to calculate experimentally unknown cross sections

Optical model

Charged particle reactions

Coulomb barrier + centrifugal barrier

no special importance of the I=0 angular momentum transfer

- Three categories:
 - ligth charged particle induced reactions (mostly direct reactions)
 - non relativistic heavy ion reactions (very high spins can be excited)
 - relativistic heavy ion reactions
- Direct reactions:
 - Bohr compound nucleus reaction model is not explaining the energy spectrum (and angular distribution)
 - fast reaction, "direct" momentum transfer to nucleons within the nucleus
 - angular distribution is forward peaked
 - knock-out (p,n), stripping (d,p), pick-up (d,t) , break-up (d,pn) reactions
 - gives very important information on energy levels, spin, parity