UND Új Nemzeti Kiválóság Program

V. Accelerators

Lorant Csige Laboratory for Nuclear Physics Hungarian Academy of Sciences

Accelerators: types

• Fisrt accelerator induced nuclear reaction: $^{7}Li + {}^{1}H \rightarrow {}^{4}He + {}^{4}He$

- until that time reactions were induced by radioactive sources (and cosmic rays) \rightarrow no chance to measure the excitation function of a reaction $\sigma(E)$
- Accelerators for particle physics:
 - to study elementary particles resonances and interactions between them \rightarrow demand for higher and higher energy
- Accelerators for nuclear physics:
 - moderate energy
 - high intensity
 - high precisity
 - wide range of available ions
- Special accelerators for nuclear physics:
 - heavy ion accelerators
 - radioactive beam factories

Accelerators: basics

- Components of a typical accelerator facility:
 - ion source, accelerator, analyzing magnet, swicthing magnet, beamline, detection systems
 - focusing magnets, vacuum systems, collimators

Cockroft-Walton cascade generator

- simple structure, low energy (0.1-1 MeV), high intensity (1-10 mA)
- high voltage is produced by cascade connections of capacitors and diodes:
 - alternating charge of C_1 and $C_2 \rightarrow V_B = 2V_0$ after a short time!

Cockroft-Walton cascade generator

- Vacuum in the accelerator tube
- Self-focusing by the inhomogenous electic field:
 - focusing in the first part, than acceleration, finally defocusing but meanwhile the velocity was increased!

- Neutron generators:
 - ${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n$ (E= 2.5 MeV)
 - ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n$ (E= 14 MeV)
 - Coulomb barrier is small: only 200-300 keV is needed (CW is good!)

bad energy stability: voltage fluctuactions!

Cockroft-Walton accelerator

• Using as pre-accelerator: Fermilab (Ilinois) 750 kV or ISIS (England) 665 keV

Van de Graaff accelerator

- 10-100 kV charging device → charge transportation to a metallic sphere by an insulating belt
- accelerator tube is equipotential plates and insulators between them
- accelerator field is by resistive voltage dividers → homogenous electric field
- maximal high voltage is defined by the size of electrode and the breakdown limit of surrounding gas:
 - in air 1-2 MV
 - with high pressure 10-20 bar gas mixture ($80\% N_2 20\% CO_2$) 5-10 MV

 lower current than CW, but better energy stability (dE/E=10⁻⁵), easily variable energy, and higher beam energies

Tandem Van de Graaf

- Using the accelerator voltage V two times
- Negative ions accelerate to the high voltage terminal at the center → stripping off electrons by a thin (¹²C) stripper foil → positive ions accelerate to ground potential
- advantage: for heavy ions high ionization can be achieved $\rightarrow E = (n+1)qV$
 - 30 MV tandem accelerator, $^{238}U^{60+} \rightarrow E=900 \text{ MeV}$! (with several stage stripping)

Tandem Van de Graaf accelerator

Van de Graaf accelerators

- Oak Ridge VDG: the largest Van de Graaf accelerator in the word
 - height is 30 m, 25.5 million Volt !!

Holifield Facility

A 3D view of the Holifield Radioactive Ion Beam Facility (HRIBF), capable of producing intense beams of unstable nuclei for basic and applied nuclear science research

Linac

- Much higher energies can be achieved if we use an accelerating voltage many time resonantly:
 - we avoid electric discharge, breakdown which is a limitation on electrostatic acceleration
- oscillating electric field between the drift tubes (acting as Faraday cage) \rightarrow acceleration
- length of the cage should increas with velocity
- bunched beam:
 - bunch length: $t \ll 1/f_{RF}$
 - bunch separation: $t = 1/f_{RF}$

Linac

 Today they are still important as pre-accelerators of proton and heavy ion accelerators

Cyclotron

• E. Lawrence (1934): first cyclotron

- only 4" in diameter
- Operation principle is similar to LINACs but orbital

- until m is constant → cyclotron frequency is constant (~B)
- outer trajectories are separated by ~cm → extraction electrode

Cyclotron - considerations

• Focusing between *D* electrodes:

- bremsstrahlung radiation causes energy loss in an orbital motion of charges:
 - large for small M₀: electron

 ΔE

 Δx

linear accelerators for energetic e-

- Beam stability:
 - finite beam size \rightarrow deviation from r
 - applying B decreasing with r
 - vertical Lorentz force→ betatron oscillation (weak focusing)

$$B_z(r) = \frac{k}{r^n}$$

n: magnetic field index

Cyclotron: properties

- High beam current can be produced \rightarrow isotope production
- Relativistic mass at high velocity (particles are delayed to ω)

- $v_{max} 0.2c \rightarrow 20$ MeV proton and 40 MeV deuteron
- First idea: one should increase B with $R \rightarrow$ beam defocusing since n < 0
- One solution: **synchrocyclotron:**
 - $\omega(t)$ is decreased during acceleration
 - − high energy (Dubna : Ep=700 MeV) → first artifical meson production (π-meson)
 - low intensity
 - mass of the magnet is 2000-8000 t (!!)
 - very expensive, many technical problems

Sector-focusing (AVF) cyclotron

• frequency is constant in time, but B is increased as:

- But n<0 → vertical beam instability !
- Solution: dividing the magnetic field into sectors and using alternating gap sizes for the sectors (so different B strength) → the inhomogenous field at sector boundaries focusing the beam vertically

AVF cycolotron: TRIUMF - Canada

with spiral geometry, the focusing is even better!

Cyclotron types: a summary

Proton synchrotron

- B(t) and $\omega(t)$ is varied, R (≈ 10 m) is kept constant
- magnetic field has $n \approx 0.7 \rightarrow vertical$ focusing
- E_{p} up to 10 GeV

Strong focusing synchrotrons, storage rings

- Based on the idea of AVF cyclotrons
- Sectors have n >> 1 followed by $n << -1 \rightarrow$ on the avarage (pairs) has 0 < n < 1
- much cheaper than having one, compact magnetic field (ring)
- for $E_p > 20 \text{ GeV}$

• Fixed target